MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

5.5 - Substitution Rule

Review:

Substitution Rule:

Recall that due to the chain rule we have: $\left(\sin \left(e^{2 x}\right)\right)^{\prime}=\cos \left(e^{2 x}\right)\left(2 e^{2 x}\right)$, or $(f(g))^{\prime}=F(g) \cdot g^{\prime}$. And since integrating is an opposite process from differentiating, we should be able to determine that $\int F(g) \cdot g^{\prime}=f(g)$. So, let's say you had to integrate something of the form $\int F[g(x)] \cdot g^{\prime}(x) d x$, or notated differently:
$\int F(u) d u$, when $u=g(x)$. For example $\int \cos \left(e^{2 x}\right) \cdot 2 e^{2 x} d x$. How could we go about solving this?
Notice that the expression $\int F(u) d u$ is simpler than $\int F[g(x)] \cdot g^{\prime}(x) d x$. But how did we eliminate $g^{\prime}(x)$ and switch from $d x$ to $d u$? Until now, we have treated the $d x$ as a notational appendage which merely told us which variable we were integrating over. The substitution rule works because it uses $d x$ operationally. Notice that if we take the derivative of $u=g(x)$ with respect to x, we get $\frac{d u}{d x}=g^{\prime}(x)$, or $d u=g^{\prime}(x) d x$. This allows us to make the necessary substitution above (try it!).

Substitution with Definite Integrals: $\int_{x=a}^{x=b} F(g(x)) g^{\prime}(x) d x=\int_{u=g(a)}^{u=g(b)} F(u) d u$, notice you have to change the bounds of integration!

Integrals of Symmetric Functions: If F is continuous on $[-a, a]$, and...

- If F is even, then $\int_{a_{-a}^{a}}^{a} F(x) d x=2 \int_{0}^{a} F(x) d x$.
- If F is odd, then $\int_{-a}^{a} F(x) d x=0$.

neither

Useful Trigonometric Integral: $\int \tan x d x=\ln |\sec x|+C$.

Problem 46. Evaluate the Indefinite Integral: $\int x^{2} \sqrt{2+x} d x$

Let $u=2+x$. Then $\frac{d u}{d x}=1$ or $d u=d x$,
$x=u-2$, so $x^{2}=(u-2)^{2}$.

Therefore: $\int x^{2} \sqrt{2+x} d x=\int(u-2)^{2} \sqrt{u} d u$
$=\int\left(u^{2}-4 u+4\right) u^{\frac{1}{2}} d u=\int\left(u^{\frac{5}{2}}-4 u^{\frac{3}{2}}+4 u^{\frac{1}{2}}\right) d u$
$=\frac{2}{7} u^{\frac{7}{2}}-\frac{8}{5} u^{\frac{5}{2}}+\frac{8}{3} u^{\frac{3}{2}}+C$.
Are we done?
$=\frac{2}{7}(2+x)^{\frac{7}{2}}-\frac{8}{5}(2+x)^{\frac{5}{2}}+\frac{8}{3}(2+x)^{\frac{3}{2}}+C$.

Problem 70. Evaluate the definite integral: $\int_{\frac{1}{2}}^{1} \frac{\cos ^{-1} x}{-\sqrt{1-x^{2}}} d x$

Notice the form $\frac{1}{-\sqrt{1-x^{2}}}$ is related to $\left(\cos ^{-1} x\right)^{\prime}$.

So, let: $u=\cos ^{-1} x$, so $d u=\frac{d x}{-\sqrt{1-x^{2}}}$. What else do I need to change?

When $x=\frac{1}{2}, u= \pm \frac{\pi}{3}$; when $x=1, u=0$.

Thus, $\int_{x=\frac{1}{2}}^{x=1} \frac{\cos ^{-1} x}{-\sqrt{1-x^{2}}} d x=\int_{u= \pm \frac{\pi}{3}}^{u=0} u d u$

$$
=\left[\frac{u^{2}}{2}\right]_{ \pm \frac{\pi}{3}}^{0}=\left(\frac{(0)^{2}}{2}-\frac{\left(\pm \frac{\pi}{3}\right)^{2}}{2}\right)=-\frac{\pi^{2}}{18}
$$

What didn't I need to change back to x this time, and why?

Instead of changing the bounds of integration, we have the option of simply converting back to x before applying the bounds:

$$
\int_{x=\frac{1}{2}}^{x=1} \frac{\cos ^{-1} x}{-\sqrt{1-x^{2}}} d x=\int_{x=\frac{1}{2}}^{x=1} u d u=\left[\frac{u^{2}}{2}\right]_{x=\frac{1}{2}}^{x=1}=\left[\frac{\left(\cos ^{-1} x\right)^{2}}{2}\right]_{x=\frac{1}{2}}^{x=1}=\left(\frac{(0)^{2}}{2}-\frac{\left(\pm \frac{\pi}{3}\right)^{2}}{2}\right)=-\frac{\pi^{2}}{18}
$$

Either way, we must still consult the unit circle!

Problem 82. A bacteria population starts with 400 bacteria and grows at a rate of $r(t)=(450.268) e^{1.12567 t}$ bacteria per hour.
How many bacteria will there be after three hours?

So the growth rate is $r(t)=a e^{b t}$, with $a=450.268$ and $b=1.12567$.

Let $P(t):=$ population after t hours.

Since $r(t)=P^{\prime}(t) \ldots$

$$
\int_{0}^{3} r(t) d t=P(3)-P(0) \text { is the total change in the population after } 3 \text { hours (net change theorem). }
$$

Since we start with 400 bacteria, the population at hour three will be...

$$
\begin{aligned}
& P(3)=400+\int_{0}^{3} r(t) d t=400+\int_{0}^{3} a e^{b t} d t \\
& =400+a \int_{0}^{3} e^{b t} d t \\
& =400+a\left[\frac{1}{b} e^{b t}\right]_{0}^{3}=400+\frac{a}{b}\left(e^{3 b}-e^{0 \cdot b}\right)=400+\frac{a}{b}\left(e^{3 b}-1\right),
\end{aligned}
$$

and substituting back in our constants:
$P(3)=400+\frac{450.268}{1.12567}\left(e^{3(1.12567)}-1\right) \approx 11,713$ bacteria !?!

