MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

6.1-Area Between Curves

Review:

Approximating the Area Between Two Curves: $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x$ $A=\int_{x=a}^{x=b}[f(x)-g(x)] d x$

Finding the area between the curves when $f \geq g$ for part of an interval, and $f \leq g$ for another part (see image below): $A=\int_{x=a}^{x=b}|f(x)-g(x)| d x$.

Finding the area when the $\mathbf{2}$ curves f and g are horizontally (instead of vertically) separated (see image below). In order to be functions in y, we must get only one x value for each y (horizontal line test) or " $x=f(y)$ " for our right curve and similarly for the left curve, $x=g(y)$, and the area between them is then: $A=\int_{y=c}^{y=d}[f(y)-g(y)] d y$.

Problem 26. Sketch the region enclosed by the curves: $y=|x|$ and $y=x^{2}-2$. Then, find its area.

What are our bounds of integration?

For $x>0,|x|=x$, so the curves intersect when:

$$
x=x^{2}-2 \quad \Rightarrow \quad 0=x^{2}-x-2 \quad \Rightarrow \quad 0=(x-2)(x+1) \quad \Rightarrow \quad x=2 .
$$

And similarly for $x<0,|x|=-x$, and we find $-x=x^{2}-2$ when $x=-2$.

Now before we start calculating the integral, notice we have symmetry (both $|x|$ and $x^{2}-2$ are even), so it is sufficient to find the area between the curves when x is greater than zero, and then double it.

So, $A=2 \int_{0}^{2}\left[x-\left(x^{2}-2\right)\right] d x=2 \int_{0}^{2}\left(x-x^{2}+2\right) d x$

$$
\begin{aligned}
& =2\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+2 x\right]_{0}^{2}=2\left[\left(\frac{1}{2}(2)^{2}-\frac{1}{3}(2)^{3}+2(2)\right)-\left(\frac{1}{2}(0)^{2}-\frac{1}{3}(0)^{3}+2 \cdot 0\right)\right] \\
& =2\left(2-\frac{8}{3}+4\right)=\frac{20}{3} .
\end{aligned}
$$

Problem 17 Sketch the region enclosed by the curves: $x=2 y^{2}$ and $x=4+y^{2}$. Find its area.

Note that both of these are parabolas. Of course, the role of x and y have been switched, so they are parabolas expanding to the right in the Cartesian coordinate plane. Also note that $4+y^{2}$ is "lifted" (to the right) by 4 , and $2 y^{2}$ grows more quickly as y increases. So the image we might have in our mind is:

If we are going to know our bounds of integration, we will need to know where these intersect. Setting the equations equal to each other: $2 y^{2}=4+y^{2} \quad \Rightarrow \quad y^{2}=4$ or $y= \pm 2$.

$$
\begin{aligned}
\int_{y=-2}^{2} & (\text { Right }- \text { Left }) d y \\
& =\int_{y=-2}^{2}\left(4+y^{2}-2 y^{2}\right) d y=\int_{y=-2}^{2} 4-y^{2} d y \\
& =\left[4 y-\frac{1}{3} y^{3}\right]_{y=-2}^{2} \\
& =\left(4 \cdot 2-\frac{1}{3} 2^{3}\right)-\left(4(-2)-\frac{1}{3}(-2)^{3}\right)=\frac{32}{3} .
\end{aligned}
$$

Problem 30. Use calculus to find the area of the triangle with the given vertices.
$(-1,1), \quad(0,2), \quad(2,0)$,

Cut up the triangle into the positive part, and the negative part (since when integrating from left to right, this is where the upper functions change: from the increasing line, to the decreasing line).

Discover the functions which define the lines, so we can integrate the areas between them.

The slope of the upper-left line through $(-1,1)$ and $(0,2)$ is: slope $=m_{g}=\frac{r i s e}{r \text { run }}=\frac{1}{1}=1$, \ldots upper-right line through $(0,2)$ and $(2,0)$ is: $m_{r}=\frac{-2}{2}=-1$
\ldots. lower line through $(-1,1)$ and $(2,0)$ is: $m_{b}=\frac{-1}{3}=-\frac{1}{3}$,

Using point-slope form, the equation of the upper-left line through $(0,2)$ is: $y-2=x$.
...upper-right line through $(2,0)$ is: $y=-1(x-2)$;
\ldots..lower line through $(2,0)$ is: $y=-\frac{1}{3}(x-2)$;

Then, putting together our integral we have:

$$
\begin{aligned}
& A=\int_{-1}^{0}\left[(x+2)-\left(-\frac{1}{3} x+\frac{2}{3}\right)\right] d x+\int_{0}^{2}\left[(-x+2)-\left(-\frac{1}{3} x+\frac{2}{3}\right)\right] d x \\
& =\int_{-1}^{0}\left(\frac{4}{3} x+\frac{4}{3}\right) d x+\int_{0}^{2}\left(-\frac{2}{3} x+\frac{4}{3}\right) d x \\
& =\left[\frac{2}{3} x^{2}+\frac{4}{3} x\right]_{-1}^{0}+\left[-\frac{1}{3} x^{2}+\frac{4}{3} x\right]_{0}^{2} \\
& =0-\left(\frac{2}{3}-\frac{4}{3}\right)+\left(-\frac{4}{3}+\frac{8}{3}\right)-0=2 .
\end{aligned}
$$

Problem 32. Evaluate $\int_{-1}^{1}\left|3^{x}-2^{x}\right| d x$ and interpret it as the area of a region. Sketch the region.

To rid ourselves of the absolute value sign, we must determine when $3^{x}-2^{x}<0$.

$$
\begin{aligned}
& 3^{x}<2^{x} \\
& \Rightarrow \quad x \ln 3<x \ln 2 \\
& \Rightarrow \quad x \ln 3-x \ln 2<0 \quad \Rightarrow \quad x(\ln 3-\ln 2)<0 \\
& \quad \Rightarrow \quad x \ln \frac{3}{2}<0
\end{aligned}
$$

And notice that this is true when $x<0$. So in this region, we want the positive values: $-\left(3^{x}-2^{x}\right)$.

So, $\quad A=\int_{-1}^{0}\left(-3^{x}+2^{x}\right) d x+\int_{0}^{1}\left(3^{x}-2^{x}\right) d x$

$$
\begin{aligned}
& =\left[\frac{2^{x}}{\ln 2}-\frac{3^{x}}{\ln 3}\right]_{-1}^{0}+\left[\frac{3^{x}}{\ln 3}-\frac{2^{x}}{\ln 2}\right]_{0}^{1} \\
& =\left[\left(\frac{1}{\ln 2}-\frac{1}{\ln 3}\right)-\left(\frac{1}{2 \ln 2}-\frac{1}{3 \ln 3}\right)\right]+\left[\left(\frac{3}{\ln 3}-\frac{2}{\ln 2}\right)-\left(\frac{1}{\ln 3}-\frac{1}{\ln 2}\right)\right] \\
& =\left(\frac{1}{\ln 2}-\frac{1}{2 \ln 2}-\frac{2}{\ln 2}+\frac{1}{\ln 2}\right)-\left(\frac{1}{\ln 3}+\frac{1}{3 \ln 3}+\frac{3}{\ln 3}-\frac{1}{\ln 3}\right)
\end{aligned}
$$

$$
=\frac{2-1-4+2}{2 \ln 2}+\frac{-3+1+9-3}{3 \ln 3}=\frac{4}{3 \ln 3}-\frac{1}{2 \ln 2} \approx 0.4923
$$

It's the area between the two curves 3^{x} and 2^{x} :

