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6.1 - Area Between Curves

Review:
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Approximating the Area Between Two Curves: A �
n��
lim �

i�1

n �f�xi
� � � g�xi

� ���x

A � �
x�a

x�b
�f�x� � g�x��dx

Finding the area between the curves when f � g for part of an interval, and f � g for another

part (see image below): A � �
x�a

x�b
|f�x� � g�x�|dx.

Finding the area when the 2 curves f and g are horizontally (instead of vertically) separated
(see image below). In order to be functions in y, we must get only one x value for each y (horizontal
line test) or "x � f�y�" for our right curve and similarly for the left curve, x � g�y�, and the area

between them is then: A � �
y�c

y�d
�f�y� � g�y��dy.



Problem 26. Sketch the region enclosed by the curves: y � |x| and y � x2 � 2. Then, find its

area.

What are our bounds of integration?

For x � 0, |x| � x, so the curves intersect when:

x � x2 � 2 � 0 � x2 � x � 2 � 0 � �x � 2��x � 1� � x � 2.

And similarly for x � 0, |x| � �x, and we find �x � x2 � 2 when x � �2.

Now before we start calculating the integral, notice we have symmetry (both |x| and x2 � 2 are even),

so it is sufficient to find the area between the curves when x is greater than zero, and then double it.
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Problem 17 Sketch the region enclosed by the curves: x � 2y2 and x � 4 � y2. Find its area.

Note that both of these are parabolas. Of course, the role of x and y have been switched, so they are

parabolas expanding to the right in the Cartesian coordinate plane. Also note that 4 � y2 is "lifted" (to

the right) by 4, and 2y2 grows more quickly as y increases. So the image we might have in our mind is:
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If we are going to know our bounds of integration, we will need to know where these intersect. Setting

the equations equal to each other: 2y2 � 4 � y2 � y2 � 4 or y � �2.
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Problem 30. Use calculus to find the area of the triangle with the given vertices.

��1,1�, �0,2�, �2,0�,
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Cut up the triangle into the positive part, and the negative part (since when integrating from left to

right, this is where the upper functions change: from the increasing line, to the decreasing line).

Discover the functions which define the lines, so we can integrate the areas between them.

The slope of the upper-left line through ��1,1� and �0,2� is: slope � mg � rise
run � 1

1
� 1 ,

	. upper-right line through �0,2� and �2,0� is: mr � �2
2

� �1

	lower line through ��1,1� and �2,0� is: mb � �1
3
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,

Using point-slope form, the equation of the upper-left line through �0,2� is: y � 2 � x.

	upper-right line through �2,0� is: y � �1�x � 2�;

	lower line through �2,0� is: y � � 1
3
�x � 2�;

Then, putting together our integral we have:
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Problem 32. Evaluate �
�1

1
|3x � 2x |dx and interpret it as the area of a region. Sketch the region.

To rid ourselves of the absolute value sign, we must determine when 3x � 2x � 0.
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And notice that this is true when x � 0. So in this region, we want the positive values: ��3x � 2x �.
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It’s the area between the two curves 3x and 2x:


