MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

6.5 - Average Value of a Function

Review:

Recall how to find the average of some numbers. Given $\{5,1,2,9,27, \pi\}$, we average them by summing them together, and dividing by the number of values. Avg $=\frac{1}{6}(5+1+2+9+27+\pi) \approx$ 7.86 .

Let's define the analogous average for a continuous function using integrals.
Average of Value of $f(x)$ is defined as: $f_{\text {avg }}=\frac{1}{\text { "number" of values }}$ ("sum" of values) $=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
Mean Value for Integrals: If f is continuous on $[a, b]$, then there exists a number c in $[a, b]$ such that:
$f(c)=f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$. Put another way: $\int_{a}^{b} f(x) d x=f(c)(b-a)$.

a
C
b

Example 1. Find the average value of $f(t)=e^{\sin t} \cos t$ on the interval $\left[0, \frac{\pi}{2}\right]$.

First integrate the function over the interval:

$$
\int_{0}^{\frac{\pi}{2}}\left(e^{\sin t} \cos t\right) d t
$$

$$
u=\sin t, \quad d u=\cos t d t
$$

So: $\int_{0}^{\frac{\pi}{2}}\left(e^{\sin t} \cos t\right) d t=\int_{t=0}^{t=\frac{\pi}{2}} e^{u} d u$

For bounds of integration $t=0$ when $u=\sin 0=0$, and $t=\frac{\pi}{2}$ when $u=\sin \frac{\pi}{2}=1$.

So, $\int_{t=0}^{t=\frac{\pi}{2}} e^{u} d u=\int_{u=0}^{u=1} e^{u} d u$

$$
\left.\left[e^{u}\right]\right|_{0} ^{1}=e-1 .
$$

Are we done?
"Find the average value of $f(t)=e^{\sin t} \cos t$ on the interval $\left[0, \frac{\pi}{2}\right] . "$

Average value of the function: $\frac{1}{\frac{\pi}{2}-0}(e-1)=\frac{2}{\pi}(e-1) \approx 1.094$.

$e^{\sin t} \cos t$ and 1.094

Example 2. In Minneapolis, the temperature t hours after $9 \mathrm{AM}\left(\right.$ in $\left.{ }^{\circ} F\right)$ is modeled by the function: $T(t)=50+14 \sin \left(\frac{\pi}{12} t\right)$.

Find the average temperature during the period from 9 AM to 9 PM .

$$
50+14 \sin \left(\frac{\pi}{12} t\right)
$$

What are our bounds of integration?

Average Temperature $=\frac{1}{12} \int_{0}^{12}\left(50+14 \sin \left(\frac{\pi}{12} t\right)\right) d t$

$$
\begin{aligned}
& =\frac{1}{12}\left[50 t-14\left(\frac{12}{\pi} \cos \left(\frac{\pi}{12} t\right)\right)\right]_{0}^{12} \quad(\text { reverse trig derivative and reverse chain rule!) } \\
& =\frac{1}{12}\left[600-14\left(\frac{12}{\pi} \cos \frac{\pi 12}{12}\right)-\left(0-14\left(\frac{12}{\pi} \cos \frac{\pi \cdot 0}{12}\right)\right)\right] \\
& =\frac{1}{12}\left(600+14\left(\frac{12}{\pi}\right)+14\left(\frac{12}{\pi}\right)\right) \\
& =50+28\left(\frac{1}{\pi}\right)=50+\frac{28}{\pi} \approx 58.9^{\circ} F .
\end{aligned}
$$

$$
50+14 \sin \frac{\pi t}{12}
$$

Problem 8. Find the average value of $h(u)=(3-2 u)^{-1}$ on the interval $[-1,1]$.

$$
\begin{gathered}
h_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} h(u) d u=\frac{1}{1-(-1)} \int_{-1}^{1}(3-2 u)^{-1} d u=\frac{1}{2} \int_{-1}^{1} \frac{1}{3-2 u} d u \\
y=3-2 u, \quad d y=-2 d u
\end{gathered}
$$

Bounds of integration: When $u=-1$, we have $y=3+2=5$. And when $u=1$, we have $y=3-2=1$.

$$
\begin{aligned}
& h_{\text {avg }}=\frac{1}{2} \int_{5}^{1} \frac{1}{y}\left(-\frac{1}{2}\right) d y=-\frac{1}{4} \int_{5}^{1} \frac{1}{y} d y \\
& =-\frac{1}{4}[\ln |y|]_{5}^{1}=-\frac{1}{4}(\ln 1-\ln 5)=\frac{1}{4} \ln 5 .
\end{aligned}
$$

Problem 13. If f is continuous and $\int_{1}^{3} f(x) d x=8$, show ("show" means prove) that f takes on the value 4 at least once on the interval $[1,3]$.

By the Medium Value Theorem, since f is continuous on $[1,3]$, then there exists a number c in $[1,3]$ such that: $f(c)=f_{\text {avg }}=\frac{1}{3-1} \int_{1}^{3} f(x) d x$.

However, we are given that $\int_{1}^{3} f(x) d x=8$, so $f(c)=4$, so f takes on the value 4 at least once on the interval [1,3].

Problem 14. Find the numbers b such that the average value of $f(x)=2+6 x-3 x^{2}$ on the interval $[0, b]$ is equal to 3 .

The requirement is that: $\frac{1}{b-0} \int_{0}^{b} f(x) d x=3$.

Observe that the LHS of this equation is equal to:

$$
\frac{1}{b} \int_{0}^{b}\left(2+6 x-3 x^{2}\right) d x=\frac{1}{b}\left[2 x+3 x^{2}-x^{3}\right]_{0}^{b}=2+3 b-b^{2} .
$$

So we solve the equation: $2+3 b-b^{2}=3 \Rightarrow b^{2}-3 b+1=0$

$$
\Rightarrow \quad b=\frac{3 \pm \sqrt{(-3)^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1}=\frac{3 \pm \sqrt{5}}{2} \approx\{0.382,2.618\}
$$

Both values of b are solutions since they are positive (create an interval $[0, b]$)

