MATH 2243: Linear Algebra & Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

10.1: Laplace Transform Methods

Given f(t) on $t \ge 0$, define the **Laplace transform** as: $F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$, for all *s* where the improper integral converges.

Recall that in order to evaluate an improper integral $\int_0^{\infty} g(t)dt$, we evaluate the limit $\lim_{b\to\infty} \int_0^b g(t)dt$. If this limit exists, we say the integral converges.

Gamma Function: $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ is a generalization of the factorial: n!($0! = 1, 1! = 1, 2! = 1 \cdot 2, 3! = 3 \cdot 2 \cdot 1, ...$) For $n \in \mathbb{N}$, let $\Gamma(n+1) = n!$. So $\Gamma(n+2) = (n+1)\Gamma(n+1) = n(n+1)\Gamma(n)$, giving us, $\Gamma(5) = 4 \cdot \Gamma(4) = 4 \cdot 3 \cdot \Gamma(3) = 4!$, and $\Gamma(1) = 0!$, etc. However, unlike the factorial function, Γ is continuous, so we can also evaluate $x \in \mathbb{R}$ when x > 0. Particularly for fractions: $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, so $\Gamma(\frac{5}{2}) = \frac{3}{2}\Gamma(\frac{3}{2}) = (\frac{3}{2} \cdot \frac{1}{2})\Gamma(\frac{1}{2}) = \frac{3}{4}\sqrt{\pi}$.

Linearity of Transforms: $\mathcal{L}{af(t) + bg(t)} = a\mathcal{L}{f(t)} + b\mathcal{L}{g(t)}.$

Inverse Transforms:

Given $F(s) = \mathcal{L}{f(t)}$, then we call f(t) the **inverse Laplace transform** of F(s), and: $f(t) = \mathcal{L}^{-1}{F(s)}$.

0

а

Unit Step Function:
$$u_a(t) = \begin{cases} 0 & \text{for } t < a, 1 \\ 1 & \text{for } t \ge a. \end{cases}$$

Commonly Used Transforms:

f(t)	$F(s) = \mathcal{L}\{f(t)\}$	
$1 = t^0$	$\frac{1}{s} = \frac{0!}{s^{0+1}}$	<i>s</i> > 0
t	$\frac{1}{s^2} = \frac{1!}{s^{1+1}}$	<i>s</i> > 0
t ⁿ	$\frac{n!}{s^{n+1}}$	<i>s</i> > 0
$t^{a} (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$	s > a
cos kt	$\frac{s}{s^2+k^2}$	<i>s</i> > 0
sin kt	$\frac{k}{s^2 + k^2}$	<i>s</i> > 0
cosh kt	$\frac{s}{s^2-k^2}$	s > k
sinh kt	$\frac{k}{s^2 - k^2}$	s > k
$u_0(t-a)$	$\frac{e^{-as}}{s}$	<i>c</i> > 0

where $n \in \{0, 1, 2, ... \}$, and $a, s, t, k \in \mathbb{R}$.

Piecewise Continuous Functions:

f(t) is **piecewise continuous** on [a,b] if you can carve up [a,b] into a **finite** number of sub-intervals such that...

1. f(t) is continuous on the interior of each of these subintervals.

2. f(t) has a finite limit as *t* approaches each end point of each subinterval. Furthermore, we see that f(t) is piecewise continuous on $[0,\infty]$ if it is piecewise continuous on every [0,b] where b > 0.

For a random f(t), does $\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$ exist?

Recall that $\int_{a}^{b} f(t) dt$ exists if *f* is piecewise continuous on [*a*,*b*].

And since e^{-st} is continuous, then $\int_0^b e^{-st} f(t) dt$ exists for all $b < \infty$ if f(t) is piecewise continuous for $t \ge 0$.

Here's the hard part: Does $\int_0^b e^{-st} f(t) dt$ exists when $b \to \infty$?

- It does when *f* is of "**exponential order**" as $t \to \infty$.
- A function is of exponential order when there exists nonnegative constants *M*, *c*, and *T* such that $|f(t)| \le Me^{ct}$ for $t \ge T$.

In other words, if f is eventually smaller than some exponential function. Examples where this requirement is met: all bounded functions & polynomials.

Existence and Uniqueness:

If *f* is piecewise continuous for $t \ge 0$, and is of exponential order as $t \to \infty$, then its Laplace transform exists. More precisely, if *f* is piecewise continuous and $|f(t)| \le Me^{ct}$, then F(s) exists for all s > c.

If *f* and *g* both have Laplace transforms (let's label them F(s) and G(s)), and there exists some number *c* such that F(s) = G(s) for s > c, then on those parts of $[0, +\infty)$ where *f* and *g* are continuous (since it is piecewise continuous), f(t) is actually the same function as g(t)!!

If *f* has a Laplace transform F(s), then $\lim_{s\to\infty} F(s) = 0$.

Problem: #6 Apply the definition $F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$ to find directly the Laplace transform of $f(t) = \sin^2 t$.

 $\mathcal{L}\{\sin^2 t\} = \int_0^\infty e^{-st} \sin^2 t dt =$

$$= \frac{1}{2} \int_0^\infty e^{-st} (1 - \cos 2t) dt = \frac{1}{2} \int_0^\infty e^{-st} dt - \frac{1}{2} \int_0^\infty e^{-st} \cos 2t dt$$

Let's first take a look at that second integral...

$$\int_{0}^{\infty} e^{-st} \cos 2t dt = \left[-\frac{\cos 2t}{se^{st}} \right]_{t=0}^{\infty} - \frac{2}{s} \int_{0}^{\infty} e^{-st} \sin 2t dt$$
$$= \left[-\frac{\cos 2t}{se^{st}} \right]_{t=0}^{\infty} - \frac{2}{s} \left(\left[-\frac{\sin 2t}{se^{st}} \right]_{t=0}^{\infty} + \frac{2}{s} \int_{0}^{\infty} e^{-st} \cos 2t dt \right)$$
$$= \left[-\frac{\cos 2t}{se^{st}} \right]_{t=0}^{\infty} + \left[\frac{2\sin 2t}{s^{2}e^{st}} \right]_{t=0}^{\infty} - \frac{4}{s^{2}} \int_{0}^{\infty} e^{-st} \cos 2t dt$$
$$\left(1 + \frac{4}{s^{2}} \right) \int_{0}^{\infty} e^{-st} \cos 2t dt = \left[\frac{2\sin 2t}{s^{2}e^{st}} - \frac{\cos 2t}{se^{st}} \right]_{t=0}^{\infty} = (0 - 0) - \left(\frac{0}{s^{2}} - \frac{1}{s} \right) = \frac{1}{s}$$

So, $\int_0^\infty e^{-st} \cos 2t dt = \frac{\frac{1}{s}}{\left(1 + \frac{4}{s^2}\right)} = \frac{s}{s^2 + 4}.$

Recall that we were trying to solve $\mathcal{L}{\{\sin^2 t\}} = \frac{1}{2} \int_0^\infty e^{-st} dt - \frac{1}{2} \int_0^\infty e^{-st} \cos 2t dt$.

Therefore,
$$\mathcal{L}\{\sin^2 t\} = \frac{1}{2} \left[-\frac{1}{s} e^{-st} \right]_{t=0}^{\infty} - \frac{1}{2} \left(\frac{s}{s^2 + 4} \right) = \frac{1}{2} \left[\left(0 + \frac{1}{s} \right) - \frac{s}{s^2 + 4} \right] = \frac{1}{2} \left[\frac{1}{s} - \frac{s}{s^2 + 4} \right].$$

Problem: #8 Apply the definition $F(s) = \mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt$ to find directly the Laplace

(1, 1) (2, 1)

transform of the following graph: f(t) =

$$\mathcal{L}{f(t)} = \int_0^\infty [e^{-st}f(t)]dt$$

$$= \int_1^2 \left[e^{-st} \cdot 1 \right] dt = \left[-\frac{e^{-st}}{s} \right]_1^2 = \frac{e^{-s} - e^{-2s}}{s}.$$

Problem: #14 Use the common transforms in the table above to find the transform of $f(t) = t^{\frac{3}{2}} - e^{-10t}$.

$$\mathcal{L}\left\{t^{\frac{3}{2}}+e^{-10t}\right\} =$$

Because of linearity:

$$= \mathcal{L}\left\{t^{\frac{3}{2}}\right\} + \mathcal{L}\left\{e^{-10t}\right\}$$

Using the table:

$t^{a} (a > -1)$	$\frac{\Gamma(a+1)}{s^{a+1}}$	<i>s</i> > 0
e ^{at}	$\frac{1}{s-a}$	s > a

$$= \frac{\Gamma\left(\frac{5}{2}\right)}{s^{\frac{5}{2}}} + \frac{1}{s+10}$$

Recall: " $\Gamma(x+2) = (x+1)\Gamma(x+1) = x(x+1)\Gamma(x)$ "

So, $\Gamma(\frac{5}{2}) = \frac{3}{2}\Gamma(\frac{3}{2})$

$$= \left(\frac{3}{2} \cdot \frac{1}{2}\right) \Gamma\left(\frac{1}{2}\right) = \frac{3}{4} \sqrt{\pi} .$$

And, $\mathcal{L}\left\{t^{\frac{3}{2}} + e^{-10t}\right\} = \frac{3\sqrt{\pi}}{4s^{\frac{5}{2}}} + \frac{1}{s+10}.$

Problem: \approx #10. The inverse Laplace transform of the function $\frac{9+s}{4-s^2}$ is...

$$\mathcal{L}^{-1}\left\{\frac{9+s}{4+s^2}\right\} = \mathcal{L}^{-1}\left\{\frac{9}{4+s^2} + \frac{s}{4+s^2}\right\}$$
$$= \mathcal{L}^{-1}\left\{\frac{9}{4+s^2}\right\} + \mathcal{L}^{-1}\left\{\frac{s}{4+s^2}\right\}$$

Using the table:

cos kt	$\frac{s}{s^2+k^2}$	<i>s</i> > 0
sin kt	$\frac{k}{s^2 + k^2}$	<i>s</i> > 0

$$= \frac{9}{2} \mathcal{L}^{-1} \left\{ \frac{2}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 4} \right\} = \frac{9}{2} \sin 2t + \cos 2t.$$