MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

1.2: Integrals as General and Particular Solutions

General Solutions:

Recall for y' = ky, our general solution is $y = Ce^{kx}$, where we can choose any constant C.

For y'' = -4y from last time, the general solution is ...

 $y = c_1 \sin 2x + c_2 \cos 2x$, where c_1, c_2 are arbitrary constants (we can choose them as we please).

So, in addition to $y = \cos 2x$ being a solution as we verified, so is $y = 5\cos 2x$, $y = e\sin 2x$, and $y = \sin 2x - \pi \cos 2x$.

You should verify this is true (on your own) by plugging the second derivatives

of these equations into y'' = -4y.

The Pattern:

Our 1st order DEQs each had only "one" **general solution**. Although, infinitely many **particular solutions** were present and we were free to arbitrarily choose the constant *C*. So, this "one" solution is actually a **family** of solutions.

Our 2nd-order DEQ had "two" general solutions, that we added in a linear combination.

Although, again we had the freedom to choose from an infinite number of **particular solutions** for each term since they each were each multiplied by an arbitrary constant. So, this also was a family of solutions.

DEQs which have the form $\frac{d^2y}{dx^2} = g(x)$, (RHS depends only on x) allow for easy solving. Rewrite as $\frac{d^2y}{dx^2} = \frac{dv}{dx} = g(x)$, where $v := \frac{dy}{dx}$. We transformed it into a 1st order DEQ!

Once we have solved for v = G(x), then solve $v = \frac{dy}{dx} = G(x)$,

as another 1st order DEQ to find y.

Position = x(t), Velocity = $\frac{dx}{dt}$, Acceleration = $\frac{dv}{dt} = \frac{d^2x}{dt}$.

Weight = mass \cdot gravity (F = ma).

Exercises 📈

Problem: #7 Find the function y = f(x) satisfying the differential equation $\frac{dy}{dx} = \frac{10}{x^2+1}$; with initial condition y(0) = 0.

 $y(x) = \int \frac{10}{x^2 + 1} dx$

= $10 \tan^{-1}x + C$. (If need be, review your inverse trigonometric derivatives)

 $10 \tan^{-1}x + C$, various values of C

Then, the substitution of init cond x = 0, y = 0 gives ...

 $0 = 10 \cdot 0 + C,$

so $y(x) = 10 \tan^{-1} x$.

Problem: #17

Find the position function x(t) of a moving particle with the given acceleration $a(t) = \frac{1}{(t+1)^3}$,

initial position $x_0 = x(0) = 0$, and initial velocity $v_0 = v(0) = 0$.

$$v(t) = \int (t+1)^{-3} dt$$

Recall *u*-substitution: $u = t + 1 \Rightarrow du = dt \Rightarrow v(t) = \int u^{-3} du$

- $= -\frac{1}{2}u^{-2} + C$ = $-\frac{1}{2}(t+1)^{-2} + C$. Now what?
- $0 = -\frac{1}{2}(0+1)^{-2} + C = -\frac{1}{2} + C$
- $v(t) = -\frac{1}{2}(t+1)^{-2} + \frac{1}{2}$. And then ...
- $x(t) = \int \left[-\frac{1}{2} (t+1)^{-2} + \frac{1}{2} \right] dt$

u-substitution: $u = t + 1 \Rightarrow du = dt \Rightarrow x(t) = \int \left[-\frac{1}{2}u^{-2} + \frac{1}{2}\right] du$

$$= \frac{1}{2}u^{-1} + \frac{1}{2}u + C_1 = \frac{1}{2}(t+1)^{-1} + \frac{1}{2}(t+1) + C_1$$
 And then ...

Since x(0) = 0, $0 = \frac{1}{2}(0+1)^{-1} + \frac{1}{2} \cdot (0+1) + C_1 = 1 + C_1 \text{ and } C_1 = -1.$

So, $x(t) = \frac{1}{2}(t+1)^{-1} + \frac{1}{2}(t-1).$

from the ground (on earth) to a height of 2.25 ft.

Assume she jumps straight upward with the same initial velocity on the moon,

where the surface gravitational acceleration is 5.3 ft/s^2 .

How high above the surface will she rise?

Eventually, we will need to solve an equation like: $x_m(t) = \int \int a_m(t) dt dt = Ct^2 + v_0t + x_0$, where x_m , and a_m are position and velocity functions on the moon and where $x_0 = 0$ (the ground), and v_0 is the "same initial velocity" on both the Earth and the moon. So we need to find out what v_0 is.

We know: $a_e = g_e = -32 ft/s^2$.

 $v_e(t) = -\int 32dt = -32t + v_0.$

 $x_e(t) = \int v_e dt = \int (-32t + v_0) dt = -16t^2 + v_0 t + x_0 = -16t^2 + v_0 t.$

Since we know something about when $x_e(t) = 2.25$, let's solve for t in the previous equation...

$$2.25 = -16t^2 + v_0 t \qquad \Rightarrow \qquad t = \frac{v_0 \pm \sqrt{v_0^2 - 64(2.25)}}{32} = \frac{v_0 \pm \sqrt{v_0^2 - 144}}{32}$$

Plugging this back into our velocity equation, and realizing that the velocity is zero at the top of the jump...

$$0 = -32\left(\frac{v_0 \pm \sqrt{v_0^2 - 144}}{32}\right) + v_0 = -v_0 \pm \sqrt{v_0^2 - 144} + v_0 = \pm \sqrt{v_0^2 - 144}.$$

And so, $v_0 = 12 ft/sec$.

We know: $a_m = -g_m = -5.3 \ ft/s^2$.

$$v_m(t) = -\int 5.3dt = -5.3t + v_0 = -5.3t + 12.$$

When $v_m = 0$, $t = \frac{12}{5.3} = 2.2642$ sec.

$$x(t) = \int v_m dt = \int (-5.3t + 12) dt = -2.65t^2 + 12t + x_0$$

= -2.65(2.2642)² + 12(2.2642) \approx 13.58 ft.

