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1.2: Integrals as General and Particular Solutions

General Solutions:
Recall for y ′  ky, our general solution is y  Cekx, where we can choose any constant C.

For y ′′  −4y from last time, the general solution is ...
y  c1 sin2x  c2 cos2x, where c1,c2 are arbitrary constants (we can choose them as we please).

So, in addition to y  cos2x being a solution as we verified,
so is y  5cos2x, y  e sin2x, and y  sin2x − cos2x.

You should verify this is true (on your own) by plugging the second derivatives
of these equations into y ′′  −4y.

The Pattern:
Our 1st order DEQs each had only "one" general solution. Although, infinitely many particular solutions were present
and we were free to arbitrarily choose the constant C. So, this "one" solution is actually a family of solutions.

Our 2nd-order DEQ had "two" general solutions, that we added in a linear combination.
Although, again we had the freedom to choose from an infinite number of particular solutions for each term since they
each were each multiplied by an arbitrary constant. So, this also was a family of solutions.

DEQs which have the form d2y
dx2

 gx, (RHS depends only on x)

allow for easy solving. Rewrite as d2y
dx2

 dv
dx  gx, where v : dy

dx .

We transformed it into a 1st order DEQ!

Once we have solved for v  Gx, then solve v  dy
dx  Gx,



as another 1st order DEQ to find y.

Position  xt, Velocity  dx
dt , Acceleration  dv

dt 
d2x
dt .

Weight  mass  gravity (F  ma).

Exercises

Problem: #7 Find the function y  fx satisfying the differential equation dy
dx  10

x21
; with initial condition

y0  0.

yx   10
x21

dx

 10 tan−1x  C. (If need be, review your inverse trigonometric derivatives)
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Then, the substitution of init cond x  0, y  0 gives ...

0  10  0  C,

so yx  10 tan−1x.
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Problem: #17

Find the position function xt of a moving particle with the given acceleration at  1
t13

,

initial position x0  x0  0, and initial velocity v0  v0  0.

vt  t  1−3dt

Recall u-substitution: u  t  1  du  dt  vt  u−3du

 − 12 u
−2  C

 − 12 t  1
−2  C. Now what?

0  − 12 0  1
−2  C  − 12  C

vt  − 12 t  1
−2  1

2 . And then ...

xt   − 12 t  1
−2  1

2 dt

u −substitution: u  t  1  du  dt  xt  − 12 u−2 
1
2 du

 1
2 u
−1  1

2 u  C1 
1
2 t  1

−1  1
2 t  1  C1 And then ...

Since x0  0,
0  1

2 0  1
−1  1

2  0  1  C1  1  C1 and C1  −1.

So, xt  1
2 t  1

−1  1
2 t − 1.
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Problem: #36 Suppose a woman has enough "spring" in her legs to jump



from the ground (on earth) to a height of 2.25 ft.
Assume she jumps straight upward with the same initial velocity on the moon,

where the surface gravitational acceleration is 5.3 ft/s2.
How high above the surface will she rise?

Eventually, we will need to solve an equation like: xmt   amtdtdt  Ct2  v0t  x0, where xm, and am are position
and velocity functions on the moon and where x0  0 (the ground), and v0 is the "same initial velocity" on both the Earth
and the moon. So we need to find out what v0 is.

We know: ae  ge  −32 ft/s2.

vet  −32dt  −32t  v0.

xet   vedt  −32t  v0dt  −16t2  v0t  x0  −16t2  v0t.

Since we know something about when xet  2.25, let’s solve for t in the previous equation…

2.25  −16t2  v0t  t 
v0 v02−642.25

32 
v0 v02−144

32

Plugging this back into our velocity equation, and realizing that the velocity is zero at the top of the jump…

0  −32
v0 v02−144

32  v0  −v0  v02 − 144  v0   v02 − 144 .

And so, v0  12 ft/ sec.

We know: am  −gm  −5.3 ft/s2.

vmt  −5.3dt  −5.3t  v0  −5.3t  12.

When vm  0, t  12
5.3  2.2642 sec.

xt   vmdt  −5.3t  12dt  −2.65t2  12t  x0
 −2.652.26422  122.2642 ≈ 13.58 ft.




