1.2: Integrals as General and Particular Solutions

General Solutions:

Recall for $y^{\prime}=k y$, our general solution is $y=C e^{k x}$, where we can choose any constant C.

For $y^{\prime \prime}=-4 y$ from last time, the general solution is \ldots
$y=c_{1} \sin 2 x+c_{2} \cos 2 x$, where c_{1}, c_{2} are arbitrary constants (we can choose them as we please).

So, in addition to $y=\cos 2 x$ being a solution as we verified,
so is $y=5 \cos 2 x, y=e \sin 2 x$, and $y=\sin 2 x-\pi \cos 2 x$.

You should verify this is true (on your own) by plugging the second derivatives
of these equations into $y^{\prime \prime}=-4 y$.

The Pattern:

Our 1st order DEQs each had only "one" general solution. Although, infinitely many particular solutions were present and we were free to arbitrarily choose the constant C. So, this "one" solution is actually a family of solutions.

Our 2nd-order DEQ had "two" general solutions, that we added in a linear combination.
Although, again we had the freedom to choose from an infinite number of particular solutions for each term since they each were each multiplied by an arbitrary constant. So, this also was a family of solutions.

DEQs which have the form $\frac{d^{2} y}{d x^{2}}=g(x), \quad$ (RHS depends only on x)
allow for easy solving. Rewrite as $\frac{d^{2} y}{d x^{2}}=\frac{d v}{d x}=g(x)$, where $v:=\frac{d y}{d x}$.
We transformed it into a 1 st order DEQ !

Once we have solved for $v=G(x)$, then solve $v=\frac{d y}{d x}=G(x)$,

$$
\text { Position }=x(t), \quad \text { Velocity }=\frac{d x}{d t}, \quad \text { Acceleration }=\frac{d v}{d t}=\frac{d^{2} x}{d t} .
$$

Weight $=$ mass \cdot gravity $\quad(F=m a)$.

Exercises

Problem: \#7 Find the function $y=f(x)$ satisfying the differential equation $\frac{d y}{d x}=\frac{10}{x^{2}+1}$; with initial condition $y(0)=0$.
$y(x)=\int \frac{10}{x^{2}+1} d x$
$=10 \tan ^{-1} x+C . \quad$ (If need be, review your inverse trigonometric derivatives)

$10 \tan ^{-1} x+C$, various values of C

Then, the substitution of init cond $x=0, y=0$ gives \ldots
$0=10 \cdot 0+C$,
so $y(x)=10 \tan ^{-1} x$.

$10 \tan ^{-1} x$

Find the position function $x(t)$ of a moving particle with the given acceleration $a(t)=\frac{1}{(t+1)^{3}}$,
initial position $x_{0}=x(0)=0$, and initial velocity $v_{0}=v(0)=0$.
$v(t)=\int(t+1)^{-3} d t$

Recall u-substitution: $u=t+1 \quad \Rightarrow \quad d u=d t \quad \Rightarrow \quad v(t)=\int u^{-3} d u$

$$
=-\frac{1}{2} u^{-2}+C
$$

$=-\frac{1}{2}(t+1)^{-2}+C . \quad$ Now what?
$0=-\frac{1}{2}(0+1)^{-2}+C=-\frac{1}{2}+C$
$v(t)=-\frac{1}{2}(t+1)^{-2}+\frac{1}{2} . \quad$ And then \ldots
$x(t)=\int\left[-\frac{1}{2}(t+1)^{-2}+\frac{1}{2}\right] d t$
u-substitution: $u=t+1 \Rightarrow d u=d t \Rightarrow x(t)=\int\left[-\frac{1}{2} u^{-2}+\frac{1}{2}\right] d u$

$$
=\frac{1}{2} u^{-1}+\frac{1}{2} u+C_{1}=\frac{1}{2}(t+1)^{-1}+\frac{1}{2}(t+1)+C_{1} \quad \text { And then } \ldots
$$

Since $x(0)=0$,

$$
0=\frac{1}{2}(0+1)^{-1}+\frac{1}{2} \cdot(0+1)+C_{1}=1+C_{1} \text { and } C_{1}=-1 .
$$

So, $\quad x(t)=\frac{1}{2}(t+1)^{-1}+\frac{1}{2}(t-1)$.

$$
\frac{1}{2}(t+1)^{-1}+\frac{1}{2}(t-1)
$$

Assume she jumps straight upward with the same initial velocity on the moon,
where the surface gravitational acceleration is $5.3 \mathrm{ft} / \mathrm{s}^{2}$.
How high above the surface will she rise?

Eventually, we will need to solve an equation like: $x_{m}(t)=\iint a_{m}(t) d t d t=C t^{2}+v_{0} t+x_{0}$, where x_{m}, and a_{m} are position and velocity functions on the moon and where $x_{0}=0$ (the ground), and v_{0} is the "same initial velocity" on both the Earth and the moon. So we need to find out what v_{0} is.

We know: $a_{e}=g_{e}=-32 \mathrm{ft} / \mathrm{s}^{2}$.
$v_{e}(t)=-\int 32 d t=-32 t+v_{0}$.
$x_{e}(t)=\int v_{e} d t=\int\left(-32 t+v_{0}\right) d t=-16 t^{2}+v_{0} t+x_{0}=-16 t^{2}+v_{0} t$.

Since we know something about when $x_{e}(t)=2.25$, let's solve for t in the previous equation...

$$
2.25=-16 t^{2}+v_{0} t \quad \Rightarrow \quad t=\frac{v_{0} \pm \sqrt{v_{0}^{2}-64(2.25)}}{32}=\frac{v_{0} \pm \sqrt{\nu_{0}^{2}-144}}{32}
$$

Plugging this back into our velocity equation, and realizing that the velocity is zero at the top of the jump...
$0=-32\left(\frac{v_{0} \pm \sqrt{v_{0}^{2}-144}}{32}\right)+v_{0}=-v_{0} \pm \sqrt{v_{0}^{2}-144}+v_{0}= \pm \sqrt{v_{0}^{2}-144}$

And so, $v_{0}=12 \mathrm{ft} / \mathrm{sec}$.

We know: $a_{m}=-g_{m}=-5.3 \mathrm{ft} / \mathrm{s}^{2}$.
$v_{m}(t)=-\int 5.3 d t=-5.3 t+v_{0}=-5.3 t+12$

When $v_{m}=0, t=\frac{12}{5.3}=2.2642 \mathrm{sec}$.

$$
\begin{aligned}
x(t) & =\int v_{m} d t=\int(-5.3 t+12) d t=-2.65 t^{2}+12 t+x_{0} \\
& =-2.65(2.2642)^{2}+12(2.2642) \approx 13.58 f t
\end{aligned}
$$

