MATH 2243: Linear Algebra \& Differential Equations
 Discussion Instructor: Jodin Morey moreyjc@umn.edu
 Website: math.umn.edu/~moreyjc

3.1 (and 3.2): Intro to Linear Systems

Say you have the following system of equations:

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \\
& a_{31} x+a_{32} y+a_{33} z=b_{3} \\
& a_{41} x+a_{42} y+a_{43} z=b_{4}
\end{aligned}
$$

$$
\begin{array}{ll}
& 1 x+5 y+8 z=0 \\
\text { For example: } & 2 x+6 y+9 z=2 \\
3 x+7 y+11 z=4 \\
& 6 x+14 y+22 z=8
\end{array}
$$

Solve it by putting it into a matrix, then transforming it into an Echelon Form Matrix by creating pivot columns (the columns with leading 1s):
$\left[\begin{array}{lll|l}a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{32} & a_{33} & b_{3} \\ a_{41} & a_{42} & a_{43} & \mid\end{array}\right]$ b4 $\quad\left[\begin{array}{ccc|c}1 & a_{12}^{\prime} & a_{13}^{\prime} & b_{1}^{\prime} \\ 0 & 1 & a_{23}^{\prime} & b_{2}^{\prime} \\ 0 & 0 & 1 & b_{3}^{\prime} \\ 0 & 0 & 0 & 0\end{array}\right]$, transforms into:
Continuing our example: $\left[\begin{array}{ccccc}1 & 5 & 8 & \mid & 0 \\ 2 & 6 & 9 & \mid & 2 \\ 3 & 7 & 11 & \mid & 4 \\ 6 & 14 & 22 & \mid & 8\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}1 & 5 & 8 & \mid \\ 0 & 1 & \frac{7}{4} & \mid \\ 0 & 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 1\end{array}\right]$.

Method of Elimination

Know how to do matrix row manipulations!
Multiply one row by a nonzero constant.
. Interchange two rows.
Add a constant multiple of one row to another row.
Pro-tips: Always Be Adding AVOID FRACTIONS!!!

When solving a system of linear equations there will be 0,1 , or ∞ solutions.

Problem: \#18 Use the method of elimination to determine whether the given linear system is consistent (has at least one solution) or inconsistent (has no solution). If the system is consistent, and if its solution is unique, provide it. Otherwise, describe the infinite solution set in terms of an arbitrary parameter t.

$$
x+5 y+6 z=3
$$

$$
\begin{aligned}
& 5 x+2 y-10 z=1 \\
& 8 x+17 y+8 z=5
\end{aligned}
$$

$\left[\begin{array}{ccccc}1 & 5 & 6 & \mid & 3 \\ 5 & 2 & -10 & \mid & 1 \\ 8 & 17 & 8 & \mid & 5\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow R_{2}+\left(-5 R_{1}\right) \text { and } R_{3}+\left(-8 R_{1}\right) \Rightarrow\left[\begin{array}{ccccc}
1 & 5 & 6 & \mid & 3 \\
0 & -23 & -40 & \mid & -14 \\
0 & -23 & -40 & \mid & -19
\end{array}\right] \\
& \Rightarrow R_{3}+\left(-R_{2}\right) \Rightarrow\left[\begin{array}{ccccc}
1 & 5 & 6 & \mid & 3 \\
0 & -23 & -40 & \mid & -14 \\
0 & 0 & 0 & \mid & -5
\end{array}\right] \quad!?!?
\end{aligned}
$$

The system is inconsistent, there are no solutions.

Problem: \#21 Use the method of elimination to determine whether the given linear system is consistent (has at least one solution) or inconsistent (has no solution). If the system is consistent, and if its solution is unique, provide it. Otherwise, describe the infinite solution set in terms of an arbitrary parameter t.

$$
\begin{gathered}
2 x+2 y-2 z=10 \\
3 x+y+3 z=11 \\
5 z+4 x+y=14
\end{gathered}
$$

$$
\Rightarrow \frac{1}{2} R_{1} \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & \mid & 5 \\
3 & 1 & 3 & \mid & 11 \\
4 & 1 & 5 & \mid & 14
\end{array}\right]
$$

$$
\Rightarrow R_{2}+\left(-3 R_{1}\right) \text { and } R_{3}+\left(-4 R_{1}\right) \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & \mid & 5 \\
0 & -2 & 6 & \mid & -4 \\
0 & -3 & 9 & \mid & -6
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow-\frac{1}{2} R_{2} \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & \mid & 5 \\
0 & 1 & -3 & \mid & 2 \\
0 & -3 & 9 & \mid & -6
\end{array}\right] \Rightarrow R_{3}+3 R_{2} \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & \mid & 5 \\
0 & 1 & -3 & \mid & 2 \\
0 & 0 & 0 & \mid & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccc}
1 & 1 & -1 & 1 & 5 \\
0 & 1 & -3 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Is there a solution? How do we write it?

We can choose for the variable z from the "free column" to be arbitrary: $z \rightarrow t$. It follows that $y=3 t+2$, and also that...
$x=-y+t+5=-(3 t+2)+t+5=-2 t+3$.

So the infinite solution set is: $(x, y, z)=(-2 t+3,3 t+2, t)$, for every $t \in \mathbb{R}$.

What does this mean?

Problem: \#28 Given: $y^{\prime \prime}-10 y^{\prime}+21 y=0$, and $y(x)=A e^{3 x}+B e^{7 x}$, determine the constants A and B, so as to find a solution of the differential equation that satisfies the initial conditions:
$y(0)=15, y^{\prime}(0)=13$.
$y(0)=A e^{3.0}+B e^{7 \cdot 0}=15, \quad$ So,$A+B=15$.
$y^{\prime}=3 A e^{3 x}+7 B e^{7 x}$ and $13=3 A e^{3 \cdot 0}+7 B e^{7 \cdot 0}, \quad$ So, $3 A+7 B=13$.

We could use the symbolic substitution method. Or, using our new matrix technique:

$$
\begin{aligned}
& \Rightarrow R_{2}-3 R_{1} \Rightarrow\left[\begin{array}{cccc}
1 & 1 & \mid & 15 \\
0 & 4 & \mid & -32
\end{array}\right] \\
& \Rightarrow \frac{1}{4} R_{2} \Rightarrow\left[\begin{array}{cccc}
1 & 1 & \mid & 15 \\
0 & 1 & \mid & -8
\end{array}\right]
\end{aligned}
$$

With $B=-8$ and $A=15-B=15-(-8)=23$.

Thus the solution of the differential equation is: $y(x)=23 e^{3 x}-8 e^{7 x}$.
Problem: \#33

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2} \\
& a_{3} x+b_{3} y=c_{3}
\end{aligned}
$$

of three equations in two unknowns (x, y) represents three lines L_{1}, L_{2}, and L_{3} in the $x y$-plane.
The figures below show six possible configurations of these 3 lines. In each case, describe the solution set of the system:

(a)

(d)

(b)

(c)

(f)

3.2: Matrices and Gaussian Elimination

If you can convert matrix \mathbf{A} into matrix \mathbf{B} through a sequence of elemental row operations, the two matrices are considered "row equivalent."

Row equivalent matrices have the same solution set (if $\vec{x}=(x, y, z)$ satisfies $\mathbf{A} \vec{x}=\vec{b}$, then it also satisfies $\mathbf{B} \vec{x}=\vec{b}$).

Back Substitution:

- Set each free variable equal to an arbitrary parameter ($\left.x_{4}=s, x_{3}=t, \ldots\right)$,
- Solve the lowest equation (of the echelon form) for its leading variable,
- Substitute into the line above, solve for that leading variable,
- Continue until all variables' values have been determined.

Problem: \#8 This linear system is in echelon form. Solve it by back substitution.

$$
\begin{aligned}
x_{1}-10 x_{2}+3 x_{3}-13 x_{4} & =5 \\
x_{3}+3 x_{4} & =10
\end{aligned}
$$

If we set $x_{2}=s$ and $x_{4}=t$, then the second equation gives \ldots

$$
\begin{aligned}
& x_{3}=10-3 t, \text { and the first equation gives } \ldots \\
& x_{1}-10 s+3(10-3 t)-13 t=5 \\
& x_{1}=10 s-3(10-3 t)+13 t+5=-25+10 s+22 t .
\end{aligned}
$$

So the infinite solution set is: $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(-25+10 s+22 t, s, 10-3 t, t)$, for every $s, t \in \mathbb{R}$.

Problem: \#22 Use elementary row operations to transform the following in a coefficient matrix to echelon form. Then solve the system by back substitution.

$$
\begin{aligned}
& 4 x_{1}-2 x_{2}-3 x_{3}+x_{4}=3 \\
& 2 x_{1}-2 x_{2}-5 x_{3}=-10 \\
& 4 x_{1}+x_{2}+2 x_{3}+x_{4}=17 \\
& 3 x_{1}+x_{3}+x_{4}=12
\end{aligned}
$$

$$
\begin{aligned}
& \text { Turn the system into: }\left[\begin{array}{cccccc}
4 & -2 & -3 & 1 & \mid c & 3 \\
2 & -2 & -5 & 0 & 1 & -10 \\
4 & 1 & 2 & 1 & 1 & 17 \\
3 & 0 & 1 & 1 & 1 & 12
\end{array}\right] \\
& \Rightarrow R_{1}+\left(-R_{4}\right) \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
2 & -2 & -5 & 0 & \mid & -10 \\
4 & 1 & 2 & 1 & \mid & 17 \\
3 & 0 & 1 & 1 & \mid & 12
\end{array}\right] \Rightarrow R_{2}+\left(-2 R_{1}\right) \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
0 & 2 & 3 & 0 & \mid & 8 \\
4 & 1 & 2 & 1 & \mid & 17 \\
3 & 0 & 1 & 1 & \mid & 12
\end{array}\right] \\
& \Rightarrow R_{3}+\left(-4 R_{1}\right) \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
0 & 2 & 3 & 0 & \mid & 8 \\
0 & 9 & 18 & 1 & \mid & 53 \\
3 & 0 & 1 & 1 & \mid & 12
\end{array}\right] \Rightarrow R_{4}+\left(-3 R_{1}\right) \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
0 & 2 & 3 & 0 & \mid & 8 \\
0 & 9 & 18 & 1 & \mid & 53 \\
0 & 6 & 13 & 1 & 1 & 39
\end{array}\right] \\
& \Rightarrow R_{2} \leftrightarrow R_{3} \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & 1 & -9 \\
0 & 9 & 18 & 1 & 1 & 53 \\
0 & 2 & 3 & 0 & 1 & 8 \\
0 & 6 & 13 & 1 & 1 & 39
\end{array}\right] \Rightarrow R_{3}+\left(-4 R_{3}\right) \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & 1 & -9 \\
0 & 1 & 6 & 1 & 1 & 21 \\
0 & 2 & 3 & 0 & 1 & 8 \\
0 & 6 & 13 & 1 & 1 & 39
\end{array}\right] \\
& \Rightarrow R_{3}+\left(-2 R_{3}\right) \text { and } R_{4}+\left(-6 R_{2}\right) \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
0 & 1 & 6 & 1 & \mid & 21 \\
0 & 0 & -9 & -2 & \mid & -34 \\
0 & 0 & -23 & -5 & 1 & -87
\end{array}\right] \\
& \Rightarrow-\frac{1}{9} R_{3} \text { and } R_{4}+23 R_{3} \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \text { । } & -9 \\
0 & 1 & 6 & 1 & \text { । } & 21 \\
0 & 0 & 1 & \frac{2}{9} & \text { । } & \frac{34}{9} \\
0 & 0 & 0 & -5+\frac{46}{9} & 1 & -87+\frac{23 \cdot 34}{9}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
0 & 1 & 6 & 1 & \mid & 21 \\
0 & 0 & 1 & \frac{2}{9} & \mid & \frac{34}{9} \\
0 & 0 & 0 & \frac{1}{9} & \mid & -\frac{1}{9}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccccc}
1 & -2 & -4 & 0 & \mid & -9 \\
0 & 1 & 6 & 1 & \text { | } & 21 \\
0 & 0 & 1 & \frac{2}{9} & \text { | } & \frac{34}{9} \\
0 & 0 & 0 & 1 & \mid & -1
\end{array}\right] . \quad \text { What is next? }
\end{aligned}
$$

$x_{4}=-1$
$x_{3}=-\frac{2}{9} x_{4}+\frac{34}{9}=\frac{2}{9}+\frac{34}{9}=4$
$x_{2}=-6 x_{3}-x_{4}+21=-6(4)-(-1)+21=-2$
$x_{1}=2 x_{2}+4 x_{3}-9=2(-2)+4(4)-9=3$.

The (only) solution is: $\vec{x}=(3,-2,4,-1)$.

Problem: \#26 Determine for what values of k the following system has
$a)$ a unique solution: b) no solution; c) infinitely many solutions.
$3 x+2 y=1$
$7 x+5 y=k$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 2 & 1 \\
7 & 5 & k
\end{array}\right] \quad \text { (Note, I left the " } \mid " \text { column out this time) }} \\
& \Rightarrow R_{2}+\left(-2 R_{1}\right) \Rightarrow\left[\begin{array}{ccc}
3 & 2 & 1 \\
1 & 1 & k-2
\end{array}\right]
\end{aligned}
$$

$\Rightarrow R_{1} \leftrightarrow R_{2} \Rightarrow\left[\begin{array}{ccc}1 & 1 & k-2 \\ 3 & 2 & 1\end{array}\right]$
$\Rightarrow R_{2}+\left(-3 R_{1}\right) \Rightarrow\left[\begin{array}{ccc}1 & 1 & k-2 \\ 0 & -1 & -3 k+7\end{array}\right] \Rightarrow\left[\begin{array}{ccc}1 & 1 & k-2 \\ 0 & 1 & 3 k-7\end{array}\right]$

Unique solution for any k !
$y=3 k-7, \quad x=-y+(k-2)=-(3 k-7)+k-2=-2 k+5$,
$\vec{v}=\left[\begin{array}{ll}-2 k+5 & 3 k-7\end{array}\right]$.
"For what values of k does the system have: a) a unique solution: b) no solution; c) infinitely many solutions."

Since no free variables (and no $0 \cdot y=1$ equations), it follows that the given system has a unique solution for every the value of k.

If our system, at the end, had instead looked like: $\left[\begin{array}{ccc}1 & 1 & k-2 \\ 0 & 0 & 0\end{array}\right]$, we would have concluded that there was an infinite number of solutions.

If our system, at the end, had looked like: $\left[\begin{array}{ccc}1 & 1 & k-2 \\ 0 & 0 & 3 k-7\end{array}\right]$, we would have concluded that
there were no solutions, except for when $k=\frac{7}{3}$, in which case there would be an infinite number of solutions.

