MATH 2243: Linear Algebra \& Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

3.7: Linear Equations and Curve Fitting

Given a finite number of data points, how do we come up with a curve which best represents the data (illustrated above)? One method is to form a polynomial of degree n :
$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where the a_{i} are constants (for example $f(x)=7+2 x$).
Interpolating Polynomial: The unique nth degree polynomial that fits the $n+1$ given data points.
How do discover such a polynomial? Well, for each data point $\left(x_{i}, y_{i}\right)$, we require that the polynomial pass through it, so we require that $f\left(x_{i}\right)=y_{i}$. And if we do this for $n+1$ data points, we end up with a system:

$$
\begin{gathered}
a_{0}+a_{1} x_{0}+a_{2}\left(x_{0}\right)^{2}+\ldots+a_{n}\left(x_{0}\right)^{n}=y_{0} \\
a_{0}+a_{1} x_{1}+a_{2}\left(x_{1}\right)^{2}+\ldots+a_{n}\left(x_{1}\right)^{n}=y_{1} \\
\vdots \\
\vdots \\
a_{0}+a_{1} x_{n}+a_{2}\left(x_{n}\right)^{2}+\ldots+a_{n}\left(x_{n}\right)^{n}=y_{n}
\end{gathered}
$$

Recall that the $\left(x_{i}, y_{i}\right)$ have been given to us (these are just numbers), therefore the above system is just a linear system of $n+1$ equations in $n+1$ unknowns (the a_{i} are our unknowns). So we can solve this using our matrix method. Putting this in a matrix equation, we have:

$$
A \cdot \vec{a}=\vec{y} \text {, where } a=\left[a_{0}, a_{1}, \ldots, a_{n}\right]^{T}, y=\left[y_{0}, y_{1}, \ldots, y_{n}\right]^{T} \text {, and } A=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right] \text {. }
$$

You may recall that this matrix is called the Vandermonde matrix, which has the special property that if all of the x_{0}, \ldots, x_{n} are unique (i.e., the graph passes the vertical line test), then the matrix A is nonsingular (i.e., the determinant is not zero). But why do we care? Because by Theorem 7 in section 3.5 , we can now say that the system has a unique solution when solving for the
coefficients a_{i}. In other words, there is a unique nth degree polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ that fits the $n+1$ data points we were given. This unique polynomial is called the interpolating polynomial.

Problem: \#1 Find the 1 st degree polynomial $y=f(x)$ that fits the points: $(1,1)$ and $(3,7)$.

1 st degree polynomial ansatz: $y(x)=a+b x$.

So we need to form the system of equations $A \cdot \vec{a}=\vec{y}$:
$\left[\begin{array}{ll}1 & x_{0} \\ 1 & x_{1}\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}y_{0} \\ y_{1}\end{array}\right]$.

Or in our case:
$\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}1 \\ 7\end{array}\right]$

Reducing $[A \mid \vec{y}]:\left[\begin{array}{llll}1 & 1 & \mid & 1 \\ 0 & 2 & \mid & 6\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & 1 & \mid & 1 \\ 0 & 1 & \mid & 3\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & 0 & \mid & -2 \\ 0 & 1 & \mid & 3\end{array}\right]$

$$
\Rightarrow \quad a=-2, b=3
$$

So, $y(x)=-2+3 x$.

Problem: \#4 Find the 2 nd degree polynomial $y=f(x)$ that fits the points: $(-1,1),(1,5)$, and $(2,16)$.

2nd degree polynomial ansatz: $y(x)=a+b x+c x^{2}$.

So we need to form the system of equations $A \cdot \vec{a}=\vec{y}$:

$$
\left[\begin{array}{lll}
1 & x_{0} & x_{0}^{2} \\
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]
$$

Or in our case:
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}1 \\ 5 \\ 16\end{array}\right]$

Reducing $[A \mid \vec{y}]:\left[\begin{array}{ccccc}1 & -1 & 1 & \mid & 1 \\ 0 & 2 & 0 & \mid & 4 \\ 0 & 3 & 3 & \mid & 15\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}1 & -1 & 1 & \mid & 1 \\ 0 & 1 & 0 & \mid & 2 \\ 0 & 3 & 3 & \mid & 15\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}1 & -1 & 1 & \mid \\ 0 & 1 & 0 & \mid \\ 0 & 0 & 3 & \mid \\ \hline\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{ccccc}
1 & -1 & 1 & \mid & 1 \\
0 & 1 & 0 & \mid & 2 \\
0 & 0 & 1 & \mid & 3
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
1 & -1 & 0 & \mid & -2 \\
0 & 1 & 0 & \mid & 2 \\
0 & 0 & 1 & \mid & 3
\end{array}\right] \Rightarrow\left[\begin{array}{lllll}
1 & 0 & 0 & \mid & 0 \\
0 & 1 & 0 & \mid & 2 \\
0 & 0 & 1 & \mid & 3
\end{array}\right]
$$

$$
\Rightarrow \quad a=0, b=2, c=3 .
$$

So, $y(x)=2 x+3 x^{2}$.

Problem: \#7 Find the 3rd degree polynomial $y=f(x)$ that fits the points: $(-1,1),(0,0),(1,1)$, and $(2,-4)$.

3rd degree polynomial ansatz: $y(x)=a+b x+c x^{2}+d x^{3}$.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
1 \\
-4
\end{array}\right]} \\
& \Rightarrow a=0, b=\frac{4}{3}, c=1, d=-\frac{4}{3}
\end{aligned}
$$

So, $y(x)=\frac{1}{3}\left(4 x+3 x^{2}-4 x^{3}\right)$.

