MATH 2243: Linear Algebra & Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

3.7: Linear Equations and Curve Fitting

Given a finite number of data points, how do we come up with a curve which best represents the data (illustrated above)? One method is to form a polynomial of degree n: $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$, where the a_i are constants (for example f(x) = 7 + 2x). **Interpolating Polynomial**: The **unique** *nth* degree polynomial that fits the n + 1 given data points.

How do discover such a polynomial? Well, for each data point (x_i, y_i) , we require that the polynomial pass through it, so we require that $f(x_i) = y_i$. And if we do this for n + 1 data points, we end up with a system:

$$a_{0} + a_{1}x_{0} + a_{2}(x_{0})^{2} + \dots + a_{n}(x_{0})^{n} = y_{0},$$

$$a_{0} + a_{1}x_{1} + a_{2}(x_{1})^{2} + \dots + a_{n}(x_{1})^{n} = y_{1},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{0} + a_{1}x_{n} + a_{2}(x_{n})^{2} + \dots + a_{n}(x_{n})^{n} = y_{n}.$$

Recall that the (x_i, y_i) have been given to us (these are just numbers), therefore the above system is just a linear system of n + 1 equations in n + 1 unknowns (the a_i are our unknowns). So we can solve this using our matrix method. Putting this in a matrix equation, we have:

$$A \cdot \vec{a} = \vec{y}, \text{ where } a = [a_0, a_1, \dots, a_n]^T, \ y = [y_0, y_1, \dots, y_n]^T, \text{ and } A = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix}.$$

You may recall that this matrix is called the **Vandermonde matrix**, which has the special property that if all of the $x_0, ..., x_n$ are unique (i.e., the graph passes the vertical line test), then the matrix *A* is nonsingular (i.e., the determinant is not zero). But why do we care? Because by Theorem 7 in section 3.5, we can now say that the system has a **unique** solution when solving for the

coefficients a_i . In other words, there is a unique nth degree polynomial $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ that fits the n + 1 data points we were given. This **unique** polynomial is called the **interpolating polynomial**.

Problem: #1 Find the 1st degree polynomial y = f(x) that fits the points: (1, 1) and (3, 7).

1st degree polynomial ansatz: y(x) = a + bx.

So we need to form the system of equations $A \cdot \vec{a} = \vec{y}$:

 $\begin{bmatrix} 1 & x_0 \\ 1 & x_1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$

Or in our case:

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} 1 \\ 7 \end{array}\right]$$

Reducing
$$[A|\vec{y}]$$
: $\begin{bmatrix} 1 & 1 & | & 1 \\ 0 & 2 & | & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & | & 1 \\ 0 & 1 & | & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & | & -2 \\ 0 & 1 & | & 3 \end{bmatrix}$

$$\Rightarrow \quad a = -2, \ b = 3.$$

So, y(x) = -2 + 3x.

Problem: #4 Find the 2nd degree polynomial y = f(x) that fits the points: (-1, 1), (1, 5), and (2, 16).

2nd degree polynomial ansatz: $y(x) = a + bx + cx^2$.

So we need to form the system of equations $A \cdot \vec{a} = \vec{y}$:

Γ	1	x_0	x_{0}^{2}	$\begin{bmatrix} a \end{bmatrix}$		y0	
	1	x_1	x_{1}^{2}	b	=	<i>y</i> 1	
	1	<i>x</i> ₂	x_{2}^{2}	c _		<i>y</i> 2	

Or in our case:

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 16 \end{bmatrix}$$

Reducing $\begin{bmatrix} A \mid \overrightarrow{y} \end{bmatrix}$:
$$\begin{bmatrix} 1 & -1 & 1 \mid 1 \\ 0 & 2 & 0 \mid 4 \\ 0 & 3 & 3 \mid 15 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 \mid 1 \\ 0 & 1 & 0 \mid 2 \\ 0 & 3 & 3 \mid 15 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 1 \mid 1 \\ 0 & 1 & 0 \mid 2 \\ 0 & 3 & 3 \mid 15 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \mid -2 \\ 0 & 1 & 0 \mid 2 \\ 0 & 0 & 1 \mid 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \mid -2 \\ 0 & 1 & 0 \mid 2 \\ 0 & 0 & 1 \mid 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \mid -2 \\ 0 & 1 & 0 \mid 2 \\ 0 & 0 & 1 \mid 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \mid 0 \\ 0 & 1 & 0 \mid 2 \\ 0 & 0 & 1 \mid 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \mid -2 \\ 0 & 1 & 0 \mid 2 \\ 0 & 0 & 1 \mid 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 \mid -2 \\ 0 & 1 & 0 \mid 2 \\ 0 & 0 & 1 \mid 3 \end{bmatrix}$$

$$\Rightarrow a = 0, b = 2, c = 3.$$

So, $y(x) = 2x + 3x^2$.

Problem: #7 Find the 3rd degree polynomial y = f(x) that fits the points: (-1,1), (0,0), (1,1), and (2,-4).

3rd degree polynomial ansatz: $y(x) = a + bx + cx^2 + dx^3$.

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}$$
$$\Rightarrow a = 0, b = \frac{4}{3}, c = 1, d = -\frac{4}{3}.$$
So, $y(x) = \frac{1}{3}(4x + 3x^2 - 4x^3).$