4.1: The Vector Space \mathbb{R}^{n}

$$
(x, y, z)
$$

If $\vec{a}=(1,2,3)$ and $\vec{b}=(4,5,6)$ are vectors, then:

$$
\vec{a}+\vec{b}=(1+4,2+5,3+6)=(5,7,9)
$$

Vector Addition

And: $3 \vec{a}=(3 \cdot 1,3 \cdot 2,3 \cdot 3)=(3,6,9)$.

Scalar Multiplication

Length of vector $\vec{x}:=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: Generalization of Pythagorean theorem: $|\vec{x}|^{2}=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}$ or $|\vec{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$.

Property: $|c \vec{x}|=|c||\vec{x}|$.
Proof for $n=2: \quad|c \vec{x}|=\left|c\left(x_{1}, x_{2}\right)\right|=\left|\left(c x_{1}, c x_{2}\right)\right|$

$$
\begin{aligned}
& =\sqrt{c^{2} x_{1}^{2}+c^{2} x_{2}^{2}} \\
& =|c| \sqrt{x_{1}^{2}+x_{2}^{2}}=|c||\vec{x}| .
\end{aligned}
$$

Example when $c=-3: \quad|-3 \vec{a}|=|(-3,-6,-9)|=\sqrt{3^{2}+6^{2}+9^{2}}=3 \sqrt{14}$, and
$|-3||(1,2,3)|=3 \sqrt{1^{2}+2^{2}+3^{2}}=3 \sqrt{14}$.

Properties of a Vector Space:

- $\vec{u}+\vec{v}=\vec{v}+\vec{u}, \quad$ [additive commutivity]
- $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$, for any \vec{w}. [additive associativity]
- $\vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}=\vec{u}$
- $1(\vec{u})=\vec{u}$
- $\vec{u}+(-\vec{u})=(-\vec{u})+\vec{u}=\overrightarrow{0}$
[additive identity, where $\overrightarrow{0}=(0,0,0, \ldots)$]
[scalar multiplicative identity]
[additive inverse, where $-(1,2,3)=(-1,-2,-3)$]
- $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$, for any $r \in \mathbb{R} \quad$ [scalar distributivity over vector addition]
- $(r+s) \vec{u}=r \vec{u}+s \vec{u}$, for any $r, s \in \mathbb{R} \quad$ [vector distributivity over scalar addition]
- $r(s \vec{u})=(r s) \vec{u}$

Proving \mathbb{R}^{n} has the properties of a vector space:
Scalar Distributivity Over Vector Addition: $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$, for any $r \in \mathbb{R}$
Proof: Given $\vec{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$, then:

$$
\begin{aligned}
r(\vec{u} & +\vec{v})=r\left(\left(u_{1}, \ldots, u_{n}\right)+\left(v_{1}, \ldots, v_{n}\right)\right) \\
& =r\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)=\left(r\left(u_{1}+v_{1}\right), \ldots, r\left(u_{n}+v_{n}\right)\right) \\
& =\left(r u_{1}+r v_{1}, \ldots, r u_{n}+r v_{n}\right) \\
& =\left(r u_{1}, \ldots, r u_{n}\right)+\left(r v_{1}, \ldots, r v_{n}\right) \\
& =r\left(u_{1}, \ldots, u_{n}\right)+r\left(v_{1}, \ldots, v_{n}\right)=r \vec{u}+r \vec{v}
\end{aligned}
$$

And similarly with the other properties.

Linearly Dependent/Independence

Linearly Dependent Vectors Theorem: Vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ are linearly dependent if and only if there exist $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$,

Important Consequence: If you have two linearly independent vectors \vec{u}_{1}, \vec{u}_{2} in \mathbb{R}^{2}, then any other \vec{u}_{3} in \mathbb{R}^{2} is a linear combination of \vec{u}_{1}, \vec{u}_{2}. In other words, $\vec{u}_{3}=a \vec{u}_{1}+b \vec{u}_{2}$, for some $a, b \in \mathbb{R}$. A similar statement can be made in \mathbb{R}^{3} for three linearly independent vectors.

Linearly Independent Vectors Theorem: Vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ are linearly independent
if and only if $\left|\vec{u}_{1} \vec{u}_{2} \ldots \vec{u}_{n}\right|:=\left|\begin{array}{cccc}u_{11} & u_{21} & \ldots & u_{31} \\ u_{12} & u_{22} & \ldots & u_{32} \\ \vdots & \vdots & \ddots & \vdots \\ u_{1 n} & u_{2 n} & \ldots & u_{3 n}\end{array}\right| \neq 0$.

Proof for $n=3$: Definition of independence means $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ are linearly independent if and only if $a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\ldots+a_{n} \vec{u}_{n}=\overrightarrow{0}$ implies $a_{1}=a_{2}=\ldots=a_{n}=0$.

Written another way: $\mathbf{U} \vec{a}:=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \ldots & \vec{u}_{n}\end{array}\right] \vec{a}=\left[\begin{array}{cccc}u_{11} & u_{21} & \ldots & u_{31} \\ u_{12} & u_{22} & \ldots & u_{32} \\ \vdots & \vdots & \ddots & \vdots \\ u_{1 n} & u_{2 n} & \ldots & u_{3 n}\end{array}\right]\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]$, implies only the trivial solution.

But by Theorem 7 in section 3.5, the preceding is true if and only if \mathbf{U} is invertible.

That is, if and only if $|\mathbf{U}| \neq 0$.

Bases

Basis for Vector Space V : A basis is a set of linearly independent vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ in V such that
every vector \vec{v} in V can be expressed as a linear combination:

$$
\vec{v}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}, \text { for some } a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R} .
$$

Particularly for \mathbb{R}^{n}, you need:

- Linearly independent vectors,
- $(\#$ of vectors $)=n$.

For \mathbb{R}^{3}, a convenient (standard) basis is $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$, so that $(a, b, c)=a \vec{e}_{1}+b \vec{e}_{2}+c \vec{e}_{3}$, for any $a, b, c \in \mathbb{R}$.

However, $\{(1,2,3),(1,5,7),(3,0,13)\}$ is also a basis.

Subspaces

Subspace: A non-empty subset of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n}\right\}$ of vector space V is said to be a subspace if,
for all \vec{v}_{i}, \vec{v}_{j} in $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n}\right\}$ and $c \in \mathbb{R}$, we have:

$$
\begin{array}{lc}
\vec{v}_{i}+\vec{v}_{j} \text { is in } V, & \text { [closed under addition] } \\
\text { and } c \vec{v}_{i} \text { is in } V . & \text { [closed under scalar multiplication] }
\end{array}
$$

Fact: Subspaces are vector spaces! Properties of vector space are "inherited."

Examples:

$\{\overrightarrow{0}\}$ in \mathbb{R}^{n},
Any line through the origin in \mathbb{R}^{n} with $n \geq 1$,
Any plane through the origin in \mathbb{R}^{n} with $n \geq 2$,
Any m-hyperplane through the origin in \mathbb{R}^{n} with $n \geq m$.

Video Tutorial (visually rich and intuitive): https://youtu.be/fNk_zzaMoSs

Exercises

Problem: \#24 Determine whether the given vectors $\vec{u}=(1,4,5), \vec{v}=(4,2,5), \vec{w}=(-3,3,-1)$ are linearly independent or dependent. If they are linearly dependent, find scalars a, b, and c not all zero such that $a \vec{u}+b \vec{v}+c \vec{w}=\overrightarrow{0}$.

So, $\mathbf{A} \vec{z}=0$, where $\vec{z}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$, and $\mathbf{A}=\left[\begin{array}{lll}\vec{u} & \vec{v} & \vec{w}\end{array}\right]=\left[\begin{array}{ccc}1 & 4 & -3 \\ 4 & 2 & 3 \\ 5 & 5 & -1\end{array}\right]$
$\mathbf{A} \Rightarrow\left[\begin{array}{ccc}1 & 4 & -3 \\ 0 & -14 & 15 \\ 0 & -15 & 14\end{array}\right] \Rightarrow\left[\begin{array}{ccc}1 & 4 & -3 \\ 0 & 1 & 1 \\ 0 & -15 & 14\end{array}\right] \Rightarrow\left[\begin{array}{ccc}1 & 4 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & 29\end{array}\right]$
$\Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

The system $\mathbf{A x}=\overrightarrow{\mathbf{0}}$ has only the trivial solution $a=b=c=0$ (\mathbf{A} is invertible), so the vectors \vec{u}, \vec{v}, and \vec{w} are linearly independent.

Problem: \#32 Show that V, defined as the set of all (x, y, z) such that $z=2 x+3 y$, is closed under addition and under multiplication by scalars, and is therefore a subspace of \mathbb{R}^{3}.

If one were to choose \vec{u} and \vec{v} randomly from V and choose $c \in \mathbb{R}$, we would then need to show that $\vec{u}+\vec{v}$ and $c \vec{v}$ are members

```
of V.
```

$\vec{u}=\left(u_{1}, u_{2}, 2 u_{1}+3 u_{2}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, 2 v_{1}+3 v_{2}\right)$ for some $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{R}$.

Closed Under Addition?

$\vec{u}+\vec{v}=\left(u_{1}+v_{1}, u_{2}+v_{2},\left(2 u_{1}+3 u_{2}\right)+\left(2 v_{1}+3 v_{2}\right)\right)$
$=\left(u_{1}+v_{1}, u_{2}+v_{2}, 2\left(u_{1}+v_{1}\right)+3\left(u_{2}+v_{2}\right)\right)$ where $u_{1}+v_{1}, u_{2}+v_{2} \in \mathbb{R}$.
$\vec{u}+\vec{v}$ is in the form (x, y, z) such that $z=2 x+3 y$, so $\vec{u}+\vec{v} \in V$.

Closed Under Scalar Multiplication?

$c \vec{v}=\left(c v_{1}, c v_{2}, 2 c v_{1}+3 c v_{2}\right)$ where $c v_{1}, c v_{2}, 2 c v_{2}+3 c v_{2} \in \mathbb{R}$.
$c \vec{v}$ is also in the form (x, y, z) such that $z=2 x+3 y$, so $c \vec{v} \in V$.

Problem: \#33 Show that V, the set of all (x, y, z) such that $y=1$, is not a subspace of \mathbb{R}^{3}.

Just need an example of vector(s) in V which are not closed under scalar multiplication or under addition.
$(0,1,0)$ is in V, but the sum $(0,1,0)+(0,1,0)=(0,2,0)$ is not in V.

Thus V is not closed under addition, so not a subspace of \mathbb{R}^{3}.

