MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

Big idea: Solutions to homogeneous linear systems of equations are subspaces that can be generated (spanned) by a few vectors.

4.3: Linear Combinations and Independence of Vectors

The Span of a Set of Vectors:

Let $V' = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ be a subset of vectors in *V*. (for example, $V' = \{(-1, 2, 1), (1, -2, 1)\}$ in \mathbb{R}^3)

Let *W* be the set of all linear combinations of *V'*. (*W* for our example would be a plane in \mathbb{R}^3)

Then, W is a subspace of V.

We write: $W = span(V') = span(\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}).$

In particular, recall in the class notes for 4.2 that the homogeneous system:

$$x_1 - 4x_2 - 3x_3 - 7x_4 = 0$$

$$2x_1 - x_2 + x_3 + 7x_4 = 0$$

$$x_1 + 2x_2 + 3x_3 + 11x_4 = 0$$

gives us solution space W consisting of $\vec{x} = a\vec{u} + b\vec{v}$, where $\vec{u} = (-1, -1, 1, 0)$ and $\vec{v} = (-5, -3, 0, 1)$.

We can visualize (??) W as a plane in \mathbb{R}^4 determined by \vec{u}, \vec{v} . In other words, $W = span(\{\vec{u}, \vec{v}\})$.

Is $\vec{w} = (2, -6, 3)$ a linear combination of $\vec{v}_1 = (1, -2, -1)$ and $\vec{v}_2 = (3, -5, 4)$? In other words, can we find unknowns c_1, c_2 such that $c_1\vec{v}_1 + c_2\vec{v}_2 = \vec{w}$?

$$c_{1}\begin{bmatrix}1\\-2\\-1\end{bmatrix}+c_{2}\begin{bmatrix}3\\-5\\4\end{bmatrix}=\begin{bmatrix}2\\-6\\3\end{bmatrix}$$
$$1 \quad 3 + 2\\-2 \quad -5 \quad | \quad -6\\-1 \quad 4 \quad | \quad 3\end{bmatrix} \Rightarrow \begin{bmatrix}1 \quad 3 \quad | \quad 2\\0 \quad 1 \quad | \quad -2\\0 \quad 7 \quad | \quad 5\end{bmatrix} \Rightarrow \begin{bmatrix}1 \quad 3 \quad | \quad 2\\0 \quad 1 \quad | \quad -2\\0 \quad 0 \quad | \quad 19\end{bmatrix}$$

Alternatively for $\vec{w} = (2, -6, -16)$, $\vec{v}_1 = (1, -2, -1)$ and $\vec{v}_2 = (3, -5, 4)$:

$$c_{1} \begin{bmatrix} 1\\ -2\\ -1 \end{bmatrix} + c_{2} \begin{bmatrix} 3\\ -5\\ 4 \end{bmatrix} = \begin{bmatrix} 2\\ -6\\ -16 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 3 & 1 & 2\\ -2 & -5 & 1 & -6\\ -1 & 4 & 1 & -16 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 1 & 2\\ 0 & 1 & 1 & -2\\ 0 & 7 & 1 & -14 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 8\\ 0 & 1 & 1 & -2\\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

 $c_1 = 8$ and $c_2 = -2$.

Linear Independence:

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ in a vector space V are said to be linearly independent provided:

 $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_k \vec{v}_k = \vec{0}$ has only the trivial solution: $c_1 = c_2 = \ldots = c_k = 0$.

Corollary: Vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are linearly dependent if and only if at least one of them is a linear combination of the others.

Uniqueness of Subspace Linear Combination: Any vector \vec{w} in the subspace W spanned by the independent vectors

 $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ is *uniquely* expressible as a linear combination of these vectors. **Proof:** If both $\vec{w} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_k \vec{v}_k$ and $\vec{w} = b_1 \vec{v}_1 + b_2 \vec{v}_2 + \dots + b_k \vec{v}_k$, then

$$a_1 \overrightarrow{v}_1 + a_2 \overrightarrow{v}_2 + \ldots + a_k \overrightarrow{v}_k = b_1 \overrightarrow{v}_1 + b_2 \overrightarrow{v}_2 + \ldots + b_k \overrightarrow{v}_k$$

$$\Rightarrow (a_1 - b_1)\vec{v}_1 + (a_2 - b_2)\vec{v}_2 + \dots + (a_k - b_k)\vec{v}_k = \vec{0}$$

But since $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ are linearly independent, $a_i = b_i$.

Standard Unit Vectors for $n: \vec{e}_1 = (1, 0, 0, ..., 0), \vec{e}_2 = (0, 1, 0, 0, ..., 0), ..., \vec{e}_n = (0, 0, ..., 1).$

Note: for any $\vec{v} = (a_1, a_2, \dots, a_n)$, we have $\vec{v} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + \dots + a_n \vec{e}_n$,

the *unique* linear combination of standard unit vectors for \vec{v} .

However, note $\{(5,0,0,0), (0,7,0,0), (0,0,9,0), (0,0,9,1)\}$ and $\{(1,1,1,0), (1,0,1,1), (1,1,0,1), (0,1,1,1)\}$ are (non-standard) bases for \mathbb{R}^4 .

Linear Independence of k < n Vectors:

 $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ in \mathbb{R}^n with k < n are linearly independent if and only if (\Leftrightarrow)

there is some $k \times k$ submatrix $\mathbf{B}^{k \times k}$ of $\mathbf{A}^{n \times k} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_k \end{bmatrix}$

with a nonzero determinant $(|\mathbf{B}^{k \times k}| \neq 0)$.

(justification in the book)

Example : $\{\vec{u}_1, \vec{u}_2\} = \{(1, 1, 0), (2, 3, 1)\}$ $\mathbf{A}^{3 \times 2} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 0 & 1 \end{bmatrix}$ $|\mathbf{B}_1| = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 0, \quad |\mathbf{B}_2| = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1, \quad |\mathbf{B}_3| = \begin{vmatrix} 2 & 4 \\ 0 & 1 \end{vmatrix} = 2.$ Alternatively : $\{\vec{u}_1, \vec{u}_2\} = \{(1, 1, 0), (2, 2, 0)\}$ $\mathbf{A}^{3 \times 2} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 0 \end{bmatrix}$ $|\mathbf{B}_1| = \begin{vmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 0 \end{vmatrix} = 0, \quad |\mathbf{B}_2| = \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0, \quad |\mathbf{B}_3| = \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0.$

Problem: #16 If possible, express $\vec{w} = (7, 7, 9, 11)$ as a linear combination of $\vec{v}_1 = (2, 0, 3, 1), \ \vec{v}_2 = (4, 1, 3, 2), \ \vec{v}_3 = (1, 3, -1, 3).$

If not, show that it is impossible.

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{w}$$
 $c_1(2,0,3,1) + c_2(4,1,3,2) + c_3(1,3,-1,3) = (7,7,9,11)$

$$\mathbf{A}\vec{c} = \vec{w} \Rightarrow \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & 3 \\ 3 & 3 & -1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \\ 9 \\ 11 \end{bmatrix} \text{ trust me} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \\ 3 \\ 0 \end{bmatrix}$$

Has the unique solution...

 $c_1 = 6, c_2 = -2, c_3 = 3, so...$

 $\vec{w} = 6\vec{v}_1 - 2\vec{v}_2 + 3\vec{v}_3.$

Want to be sure you got the right answer? Substitute into this equation the relevant vectors to ensure you get $\vec{w} = (7, 7, 9, 11)$.

Otherwise, find a nontrivial linear combination of them that is equal to the zero vector.

 $\vec{v}_1 = (3,9,0,5), \ \vec{v}_2 = (3,0,9,-7), \ \vec{v}_3 = (4,7,5,0)$

	3	3	4	٦	Γ	1	0	$\frac{7}{9}$	
A =	9	0	7			0	1	$\frac{5}{9}$	
	0	9	5			0	0	0	
	5	-7	0			0	0	0	
					_				_

We see that the system of 4 equations in 3 unknowns has a one-dimensional solution space.

$$c_{3} = s, \qquad c_{1} = -\frac{7}{9}s, \qquad c_{2} = -\frac{5}{9}s$$

 $\vec{c} = \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} -\frac{7}{9}s \\ -\frac{5}{9}s \\ s \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \\ -9 \end{bmatrix}, \text{ when } s = -9.$

Since s is a parameter, and can therefore be any real number, I have chosen -9 as its value for convenience.

So, we have $c_1 = 7$, $c_2 = 5$, and $c_3 = -9$.

Therefore $7\vec{v}_1 + 5\vec{v}_2 - 9\vec{v}_3 = \vec{0}$.

(on a test, you will want to double check this by making sure the equality holds by plugging in the vectors)

Problems: #26 Let's assume the set of vectors $\{\vec{v}_i\}$ are linearly independent. Apply the definition of linear independence to show that the vectors below are also linearly independent.

 $\vec{u}_1 = \vec{v}_2 + \vec{v}_3, \qquad \vec{u}_2 = \vec{v}_1 + \vec{v}_3, \qquad \vec{u}_3 = \vec{v}_1 + \vec{v}_2$

 $c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$, has only the trivial solution $c_1 = c_2 = c_3 = 0$.

Want to show that $b_1\vec{u}_1 + b_2\vec{u}_2 + b_3\vec{u}_3 = \vec{0}$, has only the trivial solution $b_1 = b_2 = b_3 = 0$.

(*)
$$b_1\vec{u}_1 + b_2\vec{u}_2 + b_3\vec{u}_3 = b_1(\vec{v}_2 + \vec{v}_3) + b_2(\vec{v}_1 + \vec{v}_3) + b_3(\vec{v}_1 + \vec{v}_2)$$

$$= (b_2 + b_3)\vec{v}_1 + (b_1 + b_3)\vec{v}_2 + (b_1 + b_2)\vec{v}_3$$

Setting this equal to zero, by our previous assumption it must be that $b_2 + b_3 = 0$, $b_1 + b_3 = 0$, and $b_1 + b_2 = 0$.

From the first equation we have: $b_3 = -b_2$.

Applying this to the second equation, we have: $b_1 = b_2$. And then from the third equation, we get: $2b_2 = 0$ or $b_2 = 0$. But then $b_1 = 0$, and $b_3 = 0$.

Therefore, only the trivial solution satisfies the equation (*), and the vectors $\{\vec{u}_i\}$ are therefore linearly independent.

Problem: #28 Prove: If a set *S* of vectors is linearly dependent and a (finite) set *T* contains *S*, then *T* is also linearly dependent. Assume $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_k}$ and $T = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_m}$, with m > k.

Because the set *S* of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k$ is linearly dependent,

there exist scalars c_1, c_2, \ldots, c_k not all zero such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_k \vec{v}_k = \vec{0}$.

Now let $c_{k+1} = ... = c_m = 0$.

So we have: $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_k \vec{v}_k + c_{k+1} \vec{v}_{k+1} + \ldots + c_m \vec{v}_m = \vec{0}$ with the coefficients c_1, c_2, \ldots, c_m not all zero.

This means that the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ that define *T* are linearly dependent.