MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

Big idea: Knowing the relationship between bases, dimensionality, and independence of vectors gives us information about solution sets of homogeneous linear systems, and vice versa.

4.4: Bases and Dimensions for Vector Spaces

Solution sets of homogeneous systems can be succinctly represented as a set of vectors, whose linear combinations give all possible solutions. We call this set a **basis**.

Let vectors $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ exist in the vector space V.

Basis: *S* is called a basis for *V* if the vectors in *S* are linearly independent, and span *V*.

Standard Basis for \mathbb{R}^n : $\vec{e}_1 = (1, 0, 0, \dots, 0), \ \vec{e}_2 = (0, 1, 0, 0, \dots, 0), \ \dots, \ \vec{e}_n = (0, 0, \dots, 1).$

Sufficient Vectors for Basis Theorem: Any set of *n* linearly independent vectors in \mathbb{R}^n is a basis for \mathbb{R}^n . **Proof**: Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ be *n* linearly independent vectors in \mathbb{R}^n .

From previous section, we know that any set of more than *n* vectors in \mathbb{R}^n is linearly dependent.

Therefore, given any vector \vec{w} in \mathbb{R}^n , there exist scalars c, c_1, c_2, \dots, c_n not all zero such that: $c\vec{w} + c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n = \vec{0}.$

If c were zero, then this equation would imply that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly dependent.

Therefore, $c \neq 0$. So, this equation can be solved for \vec{w} as a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$.

Thus, the linearly independent vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ also span \mathbb{R}^n and constitute a basis for \mathbb{R}^n .

Vector Space Dimensions

The **dimension of a vector space** is the number of vectors in its basis.

Bases as Maximal Linearly Independent Sets Theorem: If you have a **basis** S (for *n*-dimensional V) consisting of *n* vectors, then any set S' having more than *n* vectors is linearly dependent.

Dimension of a Vector Space Theorem: Any two bases for a vector space have the same number of vectors. **Proof**: Let $S := {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ and $T := {\vec{w}_1, \vec{w}_2, ..., \vec{w}_m}$ be two different bases for the same vector space *V*.

Because *S* is a basis and *T* is linearly independent, the previous theorem implies $m \le n$.

Next, since *T* is a basis and *S* is linearly independent: $n \le m$.

So: m = n.

Infinite Dimensional Vector Space P

Polynomials of the form: $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. Example vectors in P: $\{0, x, -7, 2 + x^4, 7 + x - x^{13}\}$.

Easily shown that *P* is a vector space.

Note that one basis for polynomials is $\{p_1, p_2, p_3, ...\} = \{1, x, x^2, ...\},\$ and all other bases have the same number of elements (Dimension of a Vector Space Theorem).

The dimension cannot be finite.

Proof: Proof by contradiction. Assume dim(*P*) = $n < \infty$. So there are *n* vectors $B = \{p_1, p_2, \dots, p_n\}$ in the basis.

Observe that the degree of any linear combination of the p_i is at most the maximum of their degrees.

Assume this maximum is *m*.

Observe that the polynomial x^{m+1} is in *P*, and can't be formed by a linear combination of the p_i .

So *B* can't be the basis for *P*, and our assumption that *P* is finite dimensional was incorrect.

A nonzero vector space that has no finite basis is called **infinite dimensional**.

Relationship between Spanning/Independence/Bases	
Let V be an n -dimensional vector space and let S be a subset of V . Then:	
• If S is linearly independent and consists of n vectors, then S is a basis for V.	(we have enough vectors)
• If S spans V and consists of n vectors, then S is a basis for V.	(we don't have too many vectors)
• If S is linearly independent, then S is contained in a basis for V.	(we may need more vectors)
• If S spans V, then S contains a basis for V.	(we may have too many vectors)

Finding the Solution Space Basis

Given the homogeneous linear equation $\mathbf{A}\vec{x} = \vec{0}$, to find the solution space W we:

♦ Reduce the coefficient matrix **A** to echelon form.

• Identify the *r* leading variables (x_1, \ldots, x_r) and

the k = n - r free variables (x_{r+1}, \dots, x_n) . If k = 0, then $W = \left\{ \overrightarrow{0} \right\}$.

- Set the free variables equal to parameters t_1, t_2, \ldots, t_k .
- Solve by back substitution for the leading variables in terms of these parameters.
- For each $1 \le j \le k$, let \vec{v}_j be the solution vector obtained by setting $t_j = 1$, and the other parameters equal to zero.

 $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a basis for the solution space *W*.

Video Tutorial (visually rich and intuitive): https://youtu.be/kYB8IZa5AuE

T

Problem: #7 Determine whether or not the given vectors in \mathbb{R}^4 form a basis for \mathbb{R}^4 . $\vec{v}_1 = (2,0,0,0), \quad \vec{v}_2 = (0,3,0,0), \quad \vec{v}_3 = (0,0,7,6), \quad \vec{v}_4 = (0,0,4,5)$

$$\begin{vmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 6 & 5 \end{vmatrix} = 2 \cdot 3(35 - 24) = 66 \neq 0.$$

So the four vectors (same number as dim(\mathbb{R}^4)) are **linearly independent**, and hence do form a basis for \mathbb{R}^4 .

Problem: #13 Find a basis for the **subspace** of \mathbb{R}^4 which consists of vectors of the form (a, b, c, d) such that a = 3c and b = 4d.

Can be written as... $\vec{v} = (3c, 4d, c, d)$

= c(3,0,1,0) + d(0,4,0,1).

So let: $\vec{v}_1 = (3,0,1,0)$ and $\vec{v}_2 = (0,4,0,1)$. And a basis is $\{\vec{v}_1, \vec{v}_2\}$.