Instructor: Jodin Morey moreyjc@umn.edu
Website: math.umn.edu/~moreyjc
Big idea: Knowing the relationship between bases, dimensionality, and independence of vectors gives us information about solution sets of homogeneous linear systems, and vice versa.

4.4: Bases and Dimensions for Vector Spaces

Solution sets of homogeneous systems can be succinctly represented as a set of vectors, whose linear combinations give all possible solutions. We call this set a basis.

Let vectors $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ exist in the vector space V.
Basis: S is called a basis for V if the vectors in S are linearly independent, and span V.
Standard Basis for $\mathbb{R}^{n}: \vec{e}_{1}=(1,0,0, \ldots, 0), \vec{e}_{2}=(0,1,0,0, \ldots, 0), \ldots, \vec{e}_{n}=(0,0, \ldots, 1)$.

Sufficient Vectors for Basis Theorem: Any set of n linearly independent vectors in \mathbb{R}^{n} is a basis for \mathbb{R}^{n}.
Proof: Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ be n linearly independent vectors in \mathbb{R}^{n}.

From previous section, we know that any set of more than n vectors in \mathbb{R}^{n} is linearly dependent.

Therefore, given any vector \vec{w} in \mathbb{R}^{n}, there exist scalars $c, c_{1}, c_{2}, \ldots, c_{n}$ not all zero such that:

$$
c \vec{w}+c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}=\overrightarrow{0}
$$

If c were zero, then this equation would imply that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent.

Therefore, $c \neq 0$. So, this equation can be solved for \vec{w} as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$.

Thus, the linearly independent vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ also span \mathbb{R}^{n} and constitute a basis for \mathbb{R}^{n}.

Vector Space Dimensions

The dimension of a vector space is the number of vectors in its basis.

Bases as Maximal Linearly Independent Sets Theorem: If you have a basis S (for n-dimensional V) consisting of n vectors, then any set S^{\prime} having more than n vectors is linearly dependent.

Dimension of a Vector Space Theorem: Any two bases for a vector space have the same number of vectors. Proof: Let $S:=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ and $T:=\left\{\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{m}\right\}$ be two different bases for the same vector space V.

Because S is a basis and T is linearly independent, the previous theorem implies $m \leq n$.

Next, since T is a basis and S is linearly independent: $n \leq m$.

So: $m=n$.

Infinite Dimensional Vector Space P

Polynomials of the form: $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$.
Example vectors in $P:\left\{0, x,-7,2+x^{4}, 7+x-x^{13}\right\}$.

Easily shown that P is a vector space.

Note that one basis for polynomials is $\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}=\left\{1, x, x^{2}, \ldots\right\}$, and all other bases have the same number of elements (Dimension of a Vector Space Theorem).

The dimension cannot be finite.

Proof: Proof by contradiction. Assume $\operatorname{dim}(P)=n<\infty$. So there are n vectors $B=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in the basis.

Observe that the degree of any linear combination of the p_{i} is at most the maximum of their degrees.

Assume this maximum is m.

Observe that the polynomial x^{m+1} is in P, and can't be formed by a linear combination of the p_{i}.

So B can't be the basis for P, and our assumption that P is finite dimensional was incorrect.

A nonzero vector space that has no finite basis is called infinite dimensional.

Relationship between Spanning/Independence/Bases

Let V be an n-dimensional vector space and let S be a subset of V. Then:

- If S is linearly independent and consists of n vectors, then S is a basis for V.
- If S spans V and consists of n vectors, then S is a basis for V.
- If S is linearly independent, then S is contained in a basis for V.
- If S spans V, then S contains a basis for V.
(we have enough vectors)
(we don't have too many vectors)
(we may need more vectors)
(we may have too many vectors)

Finding the Solution Space Basis

Given the homogeneous linear equation $\mathbf{A} \vec{x}=\overrightarrow{0}$, to find the solution space W we:

- Reduce the coefficient matrix A to echelon form.
- Identify the r leading variables $\left(x_{1}, \ldots, x_{r}\right)$ and
the $k=n-r$ free variables $\left(x_{r+1}, \ldots, x_{n}\right)$. If $k=0$, then $W=\{\overrightarrow{0}\}$.
- Set the free variables equal to parameters $t_{1}, t_{2}, \ldots, t_{k}$.
- Solve by back substitution for the leading variables in terms of these parameters.
- For each $1 \leq j \leq k$, let \vec{v}_{j} be the solution vector obtained by setting $t_{j}=1$, and the other parameters equal to zero.
$\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis for the solution space W.

Video Tutorial (visually rich and intuitive): https://youtu.be/kYB8IZa5AuE

Exercises

Problem: \# $\mathbf{7}$ Determine whether or not the given vectors in \mathbb{R}^{4} form a basis for \mathbb{R}^{4}.

$$
\vec{v}_{1}=(2,0,0,0), \quad \vec{v}_{2}=(0,3,0,0), \vec{v}_{3}=(0,0,7,6), \vec{v}_{4}=(0,0,4,5)
$$

$\left|\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 6 & 5\end{array}\right|=2 \cdot 3(35-24)=66 \neq 0$.

So the four vectors (same number as $\operatorname{dim}\left(\mathbb{R}^{4}\right)$) are linearly independent, and hence do form a basis for \mathbb{R}^{4}.

Problem: \#13 Find a basis for the subspace of \mathbb{R}^{4} which consists of vectors of the form (a, b, c, d) such that $a=3 c$ and $b=4 d$.

Can be written as... $\vec{v}=(3 c, 4 d, c, d)$

$$
=c(3,0,1,0)+d(0,4,0,1)
$$

So let: $\vec{v}_{1}=(3,0,1,0)$ and $\vec{v}_{2}=(0,4,0,1)$.
And a basis is $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$.

