4.5: Row and Column Spaces

Gaussian reduction of homogeneous systems reveals redundant equations.

$$
\begin{aligned}
& x-2 y+2 z=0 \\
& x+4 y+3 z=0 \\
& 2 x+2 y+5 z=0
\end{aligned} \Rightarrow\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 4 & 3 \\
2 & 2 & 5
\end{array}\right] \stackrel{\operatorname{Add} R_{1} \text { and } R_{2} \text { to } R_{3}}{\Rightarrow}\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 4 & 3 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \begin{aligned}
& x-2 y+2 z=0 \\
& x+4 y+3 z=0
\end{aligned}
$$

What is the domain and codomain of a matrix $\mathbf{A}^{m \times n}$, when thought of as an operator?
\mathbb{R}^{n} is the domain, and \mathbb{R}^{m} is the codomain of $\mathbf{A}^{m \times n}$.

Row Space and Row Rank

Row Vectors of A: Given $\mathbf{A}^{3 \times 2}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$, the row vectors are $\vec{r}_{1}=\left(a_{11}, a_{12}\right), \vec{r}_{2}=\left(a_{21}, a_{22}\right)$, and $\vec{r}_{3}=\left(a_{31}, a_{32}\right)$, which exist in \mathbb{R}^{2} (the domain of \mathbf{A}).

The subspace of \mathbb{R}^{2} spanned by $\left\{\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right\}$ is called the row space of the matrix \mathbf{A} or $\operatorname{Row}(\mathbf{A})$.

The dimension of the row space $\operatorname{dim}(\operatorname{Row}(\mathbf{A}))$ is called the row rank of the matrix \mathbf{A}.

The solution subspace for a system is contained in the same vector space (the domain of \mathbf{A}) as contains the row space.

Given any \mathbf{A}, transform to echelon $(\mathbf{A} \rightarrow \mathbf{E})$, and we have:
Row Space of an Echelon Matrix Theorem: The non-zero row vectors of an echelon matrix E are linearly independent and therefore form a basis of the row space of \mathbf{E}.

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 4 & 3 \\
2 & 2 & 5
\end{array}\right] \quad \Rightarrow \quad \mathbf{E}=\left[\begin{array}{lll}
3 & 0 & 7 \\
0 & 6 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Proof: Let the non-zero rows of \mathbf{E} be of the form:

$$
\begin{aligned}
& \vec{r}_{1}=\left[\begin{array}{llllll}
e_{11} & \ldots & e_{1 p} & \ldots & e_{1 q} & \ldots
\end{array}\right] \\
& \vec{r}_{2}=\left[\begin{array}{llllll}
0 & \ldots & e_{2 p} & \ldots & e_{2 q} & \ldots
\end{array}\right],
\end{aligned}
$$

$$
\vec{r}_{3}=\left[\begin{array}{llllll}
0 & \ldots & 0 & \ldots & e_{3 q} & \ldots
\end{array}\right]
$$

We need to show that $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$ are linearly independent.

Therefore, the equation $c_{1} \vec{r}_{1}+c_{2} \vec{r}_{2}+\ldots+c_{k} \vec{r}_{k}=\overrightarrow{0}$ must imply $c_{i}=0$ for all i.

But if we look at this equation component-wise, we find:

$$
c_{1} e_{11}=0, \quad c_{1} e_{1 p}+c_{2} e_{2 p}=0, \quad c_{1} e_{1 q}+c_{2} e_{2 q}+c_{3} e_{3 q}=0, \text { etc. }
$$

From the first equation, we conclude $c_{1}=0$. Substituting this into the second equation, we conclude $c_{2}=0$.

Continuing this way, we see that $c_{i}=0$ for all i, and the row vectors $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$ are linearly independent.

Row Space of Equivalent Matrices Theorem: If two matrices \mathbf{A} and \mathbf{B} are (row) equivalent, then they have the same row space.
Proof: Because \mathbf{A} becomes \mathbf{B} by row operations, it follows that each row vector of \mathbf{B} is a linear combination
of the row vectors of \mathbf{A}.

This further implies that each vector in $\operatorname{Row}(\mathbf{B})$ is also a linear combination of the row vectors of \mathbf{A}.

Therefore, $\operatorname{Row}(\mathbf{A})$ contains $\operatorname{Row}(\mathbf{B})$.

Now recall that row operations are reversible. So, \mathbf{B} can be transformed into \mathbf{A} with row operations.

So similar to above, we can conclude that $\operatorname{Row}(\mathbf{A})$ contains $\operatorname{Row}(\mathbf{B})$.

But these two statements can only be true if $\operatorname{Row}(\mathbf{A})=\operatorname{Row}(\mathbf{B})$.

Using the previous two theorems, we have:
Algorithm - Basis for the Row Space: To find a basis for the row space $\operatorname{Row}(\mathbf{A})$, use elementary row operations to reduce \mathbf{A} to an echelon matrix \mathbf{E}. Then the non-zero row vectors of \mathbf{E} form a basis for $\operatorname{Row}(\mathbf{A})$.

Column Space and Column Rank

Column Vectors of $\mathbf{A}^{m \times n}$: Given: $\mathbf{A}^{3 \times 2}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$, the column vectors of \mathbf{A} are the vectors $\vec{c}_{1}=\left(a_{11}, a_{21}, a_{31}\right)$,
and $\vec{c}_{2}=\left(a_{12}, a_{22}, a_{32}\right)$ existing in \mathbb{R}^{3} (the co-domain of $\left.\mathbf{A}\right)$.

The subspace of \mathbb{R}^{3} spanned by $\left\{\vec{c}_{1}, \vec{c}_{2}\right\}$ is called the column space of the matrix \mathbf{A} or $\operatorname{Col}(\mathbf{A})$.

The dimension of the column space $\operatorname{dim}(\operatorname{Col}(\mathbf{A}))$ is called the column rank of the matrix \mathbf{A}.

The range of a matrix \mathbf{A} is contained in the same vector space (the co-domain of \mathbf{A}) as contains the column space.

After transforming a matrix \mathbf{A} into an echelon matrix \mathbf{E}, the columns containing the leading entries are called the pivot columns of \mathbf{E}.

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -2 & 2 \\
1 & 4 & 3 \\
2 & 2 & 5
\end{array}\right] \quad \Rightarrow \quad \mathbf{E}=\left[\begin{array}{lll}
\mathbf{3} & \mathbf{0} & 7 \\
\mathbf{0} & \mathbf{6} & 1 \\
\mathbf{0} & \mathbf{0} & 0
\end{array}\right]
$$

Basis for the Column Space Algorithm: To find a basis for the column space of a matrix A, use elementary row operations to reduce \mathbf{A} to an echelon matrix \mathbf{E}. Then the column vectors of \mathbf{A} (NOT E!!!) that correspond to the pivot columns of \mathbf{E} form a basis for $\operatorname{Col}(\mathbf{A})$. (Proof is in book)

We can conclude from above that the column vectors in \mathbf{A} that do not correspond to the pivot columns in \mathbf{E} are linear combinations of the pivot columns.

Rank and Dimension

Equality of Row/Column Rank Theorem: The row rank and column rank of any matrix are equal.

So instead of the row rank or column rank of a matrix, we usually just refer to the rank of a matrix.

To solve linear systems (homogeneous, or not), we will first need to solve the associated homogeneous equation. Therefore, the subspace of these solutions is of particular interest, and is called the null of \mathbf{A} or $\operatorname{Null}(\mathbf{A})$.
Null Space of A: The solution space of the homogeneous system $\mathbf{A} \vec{x}=\overrightarrow{0}$ is called the null of \mathbf{A}, denoted by $\operatorname{Null}(\mathbf{A})$.

For $\mathbf{A}^{m \times n}$, we have: $\operatorname{rank}(\mathbf{A})+\operatorname{dim}(\operatorname{Null}(\mathbf{A}))=n$.
$(\#$ of irredundant eqs $)+(\#$ of linearly independent sols $)=(\#$ of unknowns $($ columns $))=\operatorname{dim}($ domain $)$
Four fundamental subspaces of A A is an $n \times m$ matrix with rank r

If we can find a particular solution \vec{x}_{0} of the non-homogeneous system $\mathbf{A} \vec{x}=\vec{b}$, then we can solve the system by first solving the homogeneous system $\mathbf{A} \vec{x}=\overrightarrow{0}$, where we find solutions $\vec{x}_{h}:=c_{1} \vec{x}_{1}+\ldots+c_{r} \vec{x}_{r}$, with basis $\left\{\vec{x}_{1}, \ldots, \vec{x}_{r}\right\}$.

Then the general solution to the original non-homogeneous system is: $\vec{x}=c_{1} \vec{x}_{1}+\ldots+c_{r} \vec{x}_{r}+\vec{x}_{0}+=\vec{x}_{h}+\vec{x}_{0}$.

To make sense of this, let's restrict ourselves to \mathbb{R}^{3}. Imagine our solution space of the homogeneous system to be a subspace of \mathbb{R}^{3}, maybe a plane (intersecting the origin since we have a homogeneous equation). So when $c_{1}=\ldots c_{r}=0$, we have $\vec{x}=\overrightarrow{0}$, a solution to $\mathbf{A} \vec{x}=\overrightarrow{0}$.

However, for this plane to be situated correctly to be the solution for $\mathbf{A} \vec{x}_{0}=\vec{b}$, we move (translate) this plane so that when $c_{1}=\ldots c_{r}=0$, we have $\mathbf{A} \vec{x}_{0}=\vec{b}$. To ensure our subspace (plane) includes \vec{x}_{0}, we can simply add \vec{x}_{0} to our homogeneous solution, as this will move the $\overrightarrow{0}$ solution to \vec{x}_{0}. This has the effect of moving the plane in \mathbb{R}^{3} away from the origin, and to the proper location intersecting \vec{x}_{0}.

In particular, imagine we have found the homogeneous solutions to be \vec{x}_{h}, and we have a particular solution \vec{x}_{0}. We are asserting that all the solutions to the nonhomogeneous system are in $\vec{x}_{0}+\vec{x}_{h}$. To see this is true, we multiply $\vec{x}_{0}+\vec{x}_{h}$ by \mathbf{A}, and find: $\mathbf{A}\left(\vec{x}_{0}+\vec{x}_{h}\right)=\mathbf{A} \vec{x}_{0}+\mathbf{A} \vec{x}_{h}$. But we know that $\mathbf{A} \vec{x}_{h}=0$, and we were given that $\mathbf{A} \vec{x}_{0}=\vec{b}$, so we have $\mathbf{A}\left(\vec{x}_{0}+\vec{x}_{h}\right)=\vec{b}$ for all of the linear combinations in \vec{x}_{h}.

Exercises

Problem 8: Find both a basis for the row space and also a basis for the column space of:

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -2 & -3 & -5 \\
1 & 4 & 9 & 2 \\
1 & 3 & 7 & 1 \\
2 & 2 & 6 & -3
\end{array}\right]
$$

$$
\Rightarrow \quad \mathbf{E}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The column basis is the first, second, and fourth column vectors of $\mathbf{A} . \quad \operatorname{Col}(\mathbf{A})=\operatorname{span}\left\{c_{1}, c_{2}, c_{4}\right\}$

Problem 15: Let $\vec{v}_{1}=(3,2,2,2), \vec{v}_{2}=(2,1,2,1), \vec{v}_{3}=(4,3,2,3)$, and $\vec{v}_{4}=(1,2,3,4)$. Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$. Find a subset of S that forms a basis for the subspace of \mathbb{R}^{4} spanned by S.

Define A : $=\left[\begin{array}{llll}3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4\end{array}\right]$

Calculating the echelon matrix, we get:
$\Rightarrow \quad \mathbf{E}=\left[\begin{array}{cccc}3 & 2 & 4 & 1 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Linearly independent: \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{4}.

Problem 18: Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ be a basis for a subspace W of \mathbb{R}^{n}. Then a basis T for \mathbb{R}^{n} that contains S can be found by applying the method of Example 5 in the book to the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}, \vec{e}_{1}, \ldots, \vec{e}_{n}$.
Using this technique, find a basis T for \mathbb{R}^{3} that contains the vectors $\vec{v}_{1}=(3,2,-1)$ and $\vec{v}_{2}=(2,-2,1)$.

Calculating the echelon matrix of $\mathbf{A}=\left[\begin{array}{llllll}\vec{v}_{1} & \ldots & \vec{v}_{k} & \vec{e}_{1} & \ldots & \vec{e}_{n}\end{array}\right]$, we get:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
3 & 2 & 1 & 0 & 0 \\
2 & -2 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

$$
\Rightarrow \quad \mathbf{E}=\left[\begin{array}{ccccc}
3 & 2 & 1 & 0 & 0 \\
0 & 10 & 2 & -3 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

The basis vectors are $\vec{v}_{1}, \vec{v}_{2}, \vec{e}_{2}$.

