MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

Big idea: Relationship between # of irredundant equations, # of unknowns (columns), and # of linearly independent solutions of homogeneous systems.

4.5: Row and Column Spaces

Gaussian reduction of homogeneous systems reveals redundant equations.

x - 2y + 2z = 0		1 -2 2		1 -2 2	
x + 4y + 3z = 0	\Rightarrow	1 4 3	$\begin{array}{c} \operatorname{Add} R_1 \text{ and } R_2 \text{ to } R_3 \\ \Rightarrow \end{array}$	1 4 3	$\Rightarrow x - 2y + 2z = 0$
2x + 2y + 5z = 0		2 2 5		0 0 0	x + 4y + 3z = 0

What is the domain and codomain of a matrix $A^{m \times n}$, when thought of as an operator?

 \mathbb{R}^n is the domain, and \mathbb{R}^m is the codomain of $\mathbf{A}^{m \times n}$.

Row Space and Row Rank

Row Vectors of A: Given $\mathbf{A}^{3\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$, the row vectors are $\vec{r}_1 = (a_{11}, a_{12}), \vec{r}_2 = (a_{21}, a_{22}), \text{ and } \vec{r}_3 = (a_{31}, a_{32}),$ which exist in \mathbb{R}^2 (the domain of \mathbf{A}).

The subspace of \mathbb{R}^2 spanned by $\{\vec{r}_1, \vec{r}_2, \vec{r}_3\}$ is called the **row space** of the matrix **A** or **Row**(**A**).

The dimension of the row space $\dim(Row(\mathbf{A}))$ is called the **row rank** of the matrix \mathbf{A} .

The solution subspace for a system is contained in the same vector space (the domain of A) as contains the row space.

Given any A, transform to echelon $(A \rightarrow E)$, and we have:

Row Space of an Echelon Matrix Theorem: The non-zero row vectors of an echelon matrix **E** are linearly independent and therefore form a basis of the row space of **E**.

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 4 & 3 \\ 2 & 2 & 5 \end{bmatrix} \implies \mathbf{E} = \begin{bmatrix} 3 & 0 & 7 \\ 0 & 6 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Proof: Let the non-zero rows of **E** be of the form:

$$\vec{r}_1 = \begin{bmatrix} e_{11} & \dots & e_{1p} & \dots & e_{1q} & \dots \\ \vec{r}_2 = \begin{bmatrix} 0 & \dots & e_{2p} & \dots & e_{2q} & \dots \end{bmatrix},$$

 $\vec{r}_3 = \begin{bmatrix} 0 & \dots & 0 & \dots & e_{3q} & \dots \end{bmatrix}.$

We need to show that $\vec{r}_1, \vec{r}_2, \vec{r}_3$ are linearly independent.

Therefore, the equation $c_1 \vec{r}_1 + c_2 \vec{r}_2 + \ldots + c_k \vec{r}_k = \vec{0}$ must imply $c_i = 0$ for all *i*.

But if we look at this equation component-wise, we find:

 $c_1e_{11} = 0$, $c_1e_{1p} + c_2e_{2p} = 0$, $c_1e_{1q} + c_2e_{2q} + c_3e_{3q} = 0$, etc.

From the first equation, we conclude $c_1 = 0$. Substituting this into the second equation, we conclude $c_2 = 0$.

Continuing this way, we see that $c_i = 0$ for all *i*, and the row vectors $\vec{r}_1, \vec{r}_2, \vec{r}_3$ are linearly independent.

Row Space of Equivalent Matrices Theorem: If two matrices **A** and **B** are (row) equivalent, then they have the same row space.

Proof: Because **A** becomes **B** by row operations, it follows that each row vector of **B** is a linear combination of the row vectors of **A**.

This further implies that each vector in Row(B) is also a linear combination of the row vectors of A.

Therefore, Row(A) contains Row(B).

Now recall that row operations are reversible. So, B can be transformed into A with row operations.

So similar to above, we can conclude that Row(A) contains Row(B).

But these two statements can only be true if $Row(\mathbf{A}) = Row(\mathbf{B})$.

Using the previous two theorems, we have:

Algorithm - Basis for the Row Space: To find a basis for the row space Row(A), use elementary row operations to reduce A to an echelon matrix E. Then the non-zero row vectors of E form a basis for Row(A).

Column Space and Column Rank

Column Vectors of A^{*m×n*}: Given: $\mathbf{A}^{3\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$, the column vectors of **A** are the vectors $\vec{c}_1 = (a_{11}, a_{21}, a_{31})$, and $\vec{c}_2 = (a_{12}, a_{22}, a_{32})$ existing in \mathbb{R}^3 (the co-domain of **A**).

The subspace of \mathbb{R}^3 spanned by $\{\vec{c}_1, \vec{c}_2\}$ is called the **column space** of the matrix **A** or *Col*(**A**).

The dimension of the column space $\dim(Col(\mathbf{A}))$ is called the **column rank** of the matrix \mathbf{A} .

The range of a matrix A is contained in the same vector space (the co-domain of A) as contains the column space.

After transforming a matrix **A** into an echelon matrix **E**, the columns containing the leading entries are called the **pivot columns** of **E**.

	1	-2	2			3	0	7	٦
A =	1	4	3	\Rightarrow	E =	0	6	1	
	2	2	5			0	0	0	

Basis for the Column Space Algorithm: To find a basis for the column space of a matrix \mathbf{A} , use elementary row operations to reduce \mathbf{A} to an echelon matrix \mathbf{E} . Then the column vectors of \mathbf{A} (NOT \mathbf{E} !!!) that correspond to the pivot columns of \mathbf{E} form a basis for $Col(\mathbf{A})$. (Proof is in book)

We can conclude from above that the column vectors in \mathbf{A} that do not correspond to the pivot columns in \mathbf{E} are linear combinations of the pivot columns.

Rank and Dimension

Equality of Row/Column Rank Theorem: The row rank and column rank of any matrix are equal.

So instead of the row rank or column rank of a matrix, we usually just refer to the rank of a matrix.

To solve linear systems (homogeneous, or not), we will first need to solve the associated homogeneous equation. Therefore, the subspace of these solutions is of particular interest, and is called the *null* of \mathbf{A} or *Null*(\mathbf{A}).

Null Space of A: The solution space of the homogeneous system $\mathbf{A}\vec{x} = \vec{0}$ is called the null of A, denoted by Null(A).

For $\mathbf{A}^{m \times n}$, we have: $rank(\mathbf{A}) + dim(Null(\mathbf{A})) = n$.

(# of irredundant eqs) + (# of linearly independent sols) = (# of unknowns (columns)) = dim(domain)

Non-Homogeneous Linear Systems

If we can find a particular solution \vec{x}_0 of the non-homogeneous system $\mathbf{A}\vec{x} = \vec{b}$, then we can solve the system by first solving the *homogeneous* system $\mathbf{A}\vec{x} = \vec{0}$, where we find solutions $\vec{x}_h := c_1\vec{x}_1 + \ldots + c_r\vec{x}_r$, with basis $\{\vec{x}_1, \ldots, \vec{x}_r\}$.

Then the general solution to the original *non-homogeneous* system is: $\vec{x} = c_1 \vec{x}_1 + ... + c_r \vec{x}_r + \vec{x}_0 + = \vec{x}_h + \vec{x}_0$.

To make sense of this, let's restrict ourselves to \mathbb{R}^3 . Imagine our solution space of the homogeneous system to be a subspace of \mathbb{R}^3 , maybe a plane (intersecting the origin since we have a homogeneous equation). So when $c_1 = \dots c_r = 0$, we have $\vec{x} = \vec{0}$, a solution to $\mathbf{A}\vec{x} = \vec{0}$.

However, for this plane to be situated correctly to be the solution for $\mathbf{A}\vec{x}_0 = \vec{b}$, we move (translate) this plane so that when $c_1 = \dots c_r = 0$, we have $\mathbf{A}\vec{x}_0 = \vec{b}$. To ensure our subspace (plane) includes \vec{x}_0 , we can simply add \vec{x}_0 to our homogeneous solution, as this will move the $\vec{0}$ solution to \vec{x}_0 . This has the effect of moving the plane in \mathbb{R}^3 away from the origin, and to the proper location intersecting \vec{x}_0 .

In particular, imagine we have found the homogeneous solutions to be \vec{x}_h , and we have a particular solution \vec{x}_0 . We are asserting that all the solutions to the nonhomogeneous system are in $\vec{x}_0 + \vec{x}_h$. To see this is true, we multiply $\vec{x}_0 + \vec{x}_h$ by **A**, and find: $\mathbf{A}(\vec{x}_0 + \vec{x}_h) = \mathbf{A}\vec{x}_0 + \mathbf{A}\vec{x}_h$. But we know that $\mathbf{A}\vec{x}_h = 0$, and we were given that $\mathbf{A}\vec{x}_0 = \vec{b}$, so we have $\mathbf{A}(\vec{x}_0 + \vec{x}_h) = \vec{b}$ for all of the linear combinations in \vec{x}_h .

Exercises 🔬

Problem 8: Find both a basis for the row space and also a basis for the column space of:

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -3 & -5 \\ 1 & 4 & 9 & 2 \\ 1 & 3 & 7 & 1 \\ 2 & 2 & 6 & -3 \end{bmatrix}$$

$$\Rightarrow \mathbf{E} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The row basis is the first three row vectors of **E**. $Row(\mathbf{A}) = span\{r_1, r_2, r_3\}$

The column basis is the first, second, and fourth column vectors of **A**. $Col(\mathbf{A}) = span\{c_1, c_2, c_4\}$

Problem 15: Let $\vec{v}_1 = (3, 2, 2, 2)$, $\vec{v}_2 = (2, 1, 2, 1)$, $\vec{v}_3 = (4, 3, 2, 3)$, and $\vec{v}_4 = (1, 2, 3, 4)$. Let $S = \{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$. Find a subset of *S* that forms a basis for the subspace of \mathbb{R}^4 spanned by *S*.

Define \mathbf{A} : = $\begin{bmatrix} 3 & 2 & 4 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 2 & 2 & 3 \\ 2 & 1 & 3 & 4 \end{bmatrix}$.

Calculating the echelon matrix, we get:

 $\Rightarrow \mathbf{E} = \begin{bmatrix} 3 & 2 & 4 & 1 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Linearly independent: \vec{v}_1 , \vec{v}_2 , and \vec{v}_4 .

Problem 18: Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be a basis for a subspace W of \mathbb{R}^n . Then a basis T for \mathbb{R}^n that contains S can be found by applying the method of Example 5 in the book to the vectors $\vec{v}_1, \dots, \vec{v}_k, \vec{e}_1, \dots, \vec{e}_n$.

Using this technique, find a basis T for \mathbb{R}^3 that contains the vectors $\vec{v}_1 = (3, 2, -1)$ and $\vec{v}_2 = (2, -2, 1)$.

Calculating the echelon matrix of $\mathbf{A} = \begin{bmatrix} \vec{v}_1 & \dots & \vec{v}_k & \vec{e}_1 & \dots & \vec{e}_n \end{bmatrix}$, we get:

 $\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 2 & -2 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 \end{bmatrix}.$ $\Rightarrow \mathbf{E} = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 0 & 10 & 2 & -3 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}.$

The basis vectors are \vec{v}_1 , \vec{v}_2 , \vec{e}_2 .