MATH 2243: Linear Algebra \& Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

5.1: Second-Order Linear Equations:

Modeling the world with first-order DEQs $y^{\prime}+q(x) y=f(x)$ assumes a simple situation in which the coefficient in front of $y^{\prime \prime}$ is zero (and similarly with $y^{\prime \prime \prime}, y^{(4)}$, etc.).

We have seen that solving a first order DEQ gives us a 1 -dimensional family of solutions (e.g., $y=C e^{x}$). But if we assume a more complicated scenario where the coefficient in front of $y^{\prime \prime}$ is nonzero, we generate more solutions. Solving this 2 nd order DEQ (e.g., $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$) gives us a 2-dimensional family of solutions (e.g., $y=A e^{x}+B e^{-x}$).

Linear DEQ: $e^{x} y^{\prime \prime}+\cos (x) y^{\prime}+(1+\sqrt{x}) y=\tan ^{-1}(x)$
Non-linear DEQ: $y^{\prime \prime}+3\left(y^{\prime}\right)^{2}+4 y^{3}=0$
Non-homogenous: $x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=\cos x$,
which is associated with homogenous DEQ: $x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0$.

Mechanical Systems

Mass, Spring, Damper (see animation in class)

Hooke's Law: $F_{S}=-k x$, where $k>0 \quad$ (Spring Force)
$F_{R}=-c v=-c \frac{d x}{d t}$, where $c>0 \quad$ (Resistance/Damping Force)

Newton: $F=m a=m \frac{d^{2} x}{d t^{2}}$.

Therefore $m \frac{d^{2} x}{d t^{2}}=F_{S}+F_{R}$, or $m x^{\prime \prime}+c x^{\prime}+k x=0$. (homogeneous model with damping)

External Periodic Force
$m x^{\prime \prime}+c x^{\prime}+k x=F(t) \quad$ (model which includes damping and nonhomogeneous external force)

More General Mathematical Treatment

$A(t) x^{\prime \prime}+B(t) x^{\prime}+C(t) x=F(t) \quad$ or $\quad A(x) y^{\prime \prime}+B(x) y^{\prime}+C(x) y=F(x)$.

Normal Form: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)$, obtained if $A(x) \neq 0$ on the interval of interest.

Superposition of Homogeneous DEQ Solutions Theorem: If y_{1}, y_{2} are solutions to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, and c_{1}, c_{2} are constants, then $y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution.

This generalizes to nth order DEQs.

Proof: We are given that $y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}=0$ and $y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}=0$.

We must show that $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ when substituting in $y=c_{1} y_{1}+c_{2} y_{2}$.

Observe $y^{\prime}=c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}$ and $y^{\prime \prime}=c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}$.

Substituting in: $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+p(x)\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+q(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)$

$$
\begin{aligned}
& =c_{1} y_{1}^{\prime \prime}+c_{1} p(x) y_{1}^{\prime}+c_{1} q(x) y_{1}+c_{2} y_{2}^{\prime \prime}+c_{2} p(x) y_{2}^{\prime}+c_{2} q(x) y_{2} \\
& =c_{1}\left(y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+q(x) y_{1}\right)+c_{2}\left(y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+q(x) y_{2}\right) \\
& =c_{1} \cdot 0+c_{2} \cdot 0=0 .
\end{aligned}
$$

So solutions to homogeneous DEQs form a vector space.

Existence and Uniqueness for Linear DEQs Theorem: Given: $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x)$,
if at a point $x=a$ the expressions $p_{1}(x), p_{2}(x)$, and $f(x)$ are continuous on some interval, then there's a unique solution to $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x)$ on that interval satisfying initial conditions:
$y(a)=b_{0}, y^{\prime}(a)=b_{1}$, for any $b_{0}, b_{1} \in \mathbb{R}$.

This generalizes to nth order DEQs.

Recall that each first order DEQ gave a unique solution for each point (a, b).
For the 2 nd order DEQ above, note that if we choose initial condition $y(a)=b_{0}$, there is still an infinite number of solutions based upon our choice of initial condition $y^{\prime}(a)=b_{1}$. Geometrically, this means that for every point in the plane, we can choose any (finite) slope we want, and there will be a solution going through that point with that slope.

Recall that in \mathbb{R}^{2}, we needed two linearly independent vectors to span the vector space. Similarly, to span the solution set \mathbb{S} of a homogeneous second order DEQ, you need two linearly independent vectors, which in our case are functions y_{1}, y_{2}.

And as with the vectors in $\mathbb{R}^{2}, y_{1}, y_{2}$ are linearly independent if they are not constant multiples of each other. $y_{1} \neq k y_{2}$ where $k \in \mathbb{R}$.

However, it's not always clear cut whether two functions are constant multiples of each other.

Independence of Functions

Let's develop the condition under which, given a DEQ $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x)$, and any two solutions y_{1}, y_{2} we can say that the solution $y=c_{1} y_{1}+c_{2} y_{2}$ represents the general solution (spans the solutions space).

Well we know y_{1}, y_{2} must be linearly independent, but how can we check this?

Recall that our existence theorem above for DEQ solutions suggests that if y IS our general solution, we should be able to uniquely find any particular solution using any initial conditions $y(a)=b_{0}, y^{\prime}(a)=b_{1}$. In other words, solve the system:

$$
\begin{aligned}
& c_{1} y_{1}(a)+c_{2} y_{2}(a)=b_{0} \\
& c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=b_{1}
\end{aligned} \quad \Rightarrow\left[\begin{array}{ll}
y_{1}(a) & y_{2}(a) \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right] .
$$

Observe that we can solve for c_{1}, c_{2} uniquely if the determinant of the matrix is nonzero.

Further observe that for y to be the general solution, the determinant must be nonzero for every choice of a.

This suggests a method for identifying functions which are linearly independent.

Wronskian (denoted by: W):
Given $y_{1}(x), y_{2}(x)$ we denote $W(x)=W\left(y_{1}, y_{2}\right):=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$.
This generalizes to n EQs with an $n \times n$ determinant with $n-1$ derivatives.

Wronskian of Solutions Theorem: If y_{1}, y_{2} are solutions to $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0$ on an interval I where p_{1}, p_{2} are continuous, then:

- y_{1}, y_{2} are linearly dependent if and only if $W\left(y_{1}, y_{2}\right)=0$, at each point x in I.
- y_{1}, y_{2} are linearly independent if and only if $W\left(y_{1}, y_{2}\right) \neq 0$ at each point x in I.

For all other solutions $y(x)$ to the homogeneous DEQ,
there exists $c_{1}, c_{2} \in \mathbb{R}$ such that: $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \quad$ (general solution).

This generalizes to nth order DEQs with p_{1}, \ldots, p_{n}, with n solutions y_{1}, \ldots, y_{n}, and $c_{1}, \ldots, c_{n} \in \mathbb{R}$.

General Solutions of Homogeneous DEQs Theorem: Let y_{1}, y_{2} be linearly independent solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, with p, q continuous on some interval I. If Y is any solution whatsoever on I, then there exists $c_{1}, c_{2} \in \mathbb{R}$ such that $Y(x)=c_{1} y_{1}+c_{2} y_{2}$, for all x on I.

Proof: Choose $a \in I$. Consider:

$$
\begin{aligned}
c_{1} y_{1}(a)+c_{2} y_{2}(a) & =Y(a), \\
c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a) & =Y^{\prime}(a) . \\
{\left[\begin{array}{ll}
y_{1}(a) & y_{2}(a) \\
y_{1}^{\prime}(a) & y_{2}^{\prime}(a)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] } & =\left[\begin{array}{c}
Y(a) \\
Y^{\prime}(a)
\end{array}\right]
\end{aligned}
$$

Observe: $W\left(y_{1}, y_{2}\right):=\left|\begin{array}{ll}y_{1}(x) & y_{2}(x) \\ y_{1}^{\prime}(x) & y_{2}^{\prime}(x)\end{array}\right| \neq 0$ (for all x, including $x=a$), since we have independence.

So we can reduce the system to solve for c_{1}, c_{2}. But does $Y=c_{1} y_{1}+c_{2} y_{2}$ for the rest of $x \in I$?

Define $G(x):=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.
Observe that this solves the DEQ since it is a linear combination of solutions.

Recall that the uniqueness theorem tells us that solutions which satisfy
initial conditions $y(a)=b_{1}$ and $y^{\prime}(a)=b_{2}$ are unique.

Note that $G(a)=c_{1} y_{1}(a)+c_{2} y_{2}(a)=Y(a)$.
and $G^{\prime}(a)=c_{1} y_{1}^{\prime}(a)+c_{2} y_{2}^{\prime}(a)=Y^{\prime}(a)$.

So, since both G and Y satisfy the same initial conditions,
and are both solutions to the DEQ, $Y(x)=G(x)$, on I.
And we have $Y(x)=c_{1} y_{1}+c_{2} y_{2}$, for all x on I.

2nd Order Homogeneous DEQs w/ Constant Coefficients

In general, it is difficult/impossible to solve 2nd order DEQs.

So let us simplify to linear 2nd order homogeneous DEQs with constant coefficients.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

To solve this, we need a y such that a linear combination of its derivatives is equal to y multiplied by a constant (i.e., $a y^{\prime \prime}+b y^{\prime}=-c y$).

Note if $y:=e^{r x}$, then: $y^{\prime}=\left(e^{r x}\right)^{\prime}=r e^{r x}=r y$. And $y^{\prime \prime}=r^{2} y$.

This implies we might be able to make this type of substitution to find a solution, by solving for r.

$$
\begin{gathered}
a r^{2} y+b r y+c y=0 \\
a r^{2}+b r+c=0, \text { for } y \neq 0 .
\end{gathered}
$$

Characteristic Equation Algorithm: To solve $a y^{\prime \prime}+b y^{\prime}+c y=0$, replace $y^{\prime \prime}, y^{\prime}, y$ with $r^{2}, r, 1$.

Then, algebraically solve the characteristic equation $\left(a r^{2}+b r+c=0\right)$ for r.

- If solutions r_{1}, r_{2} are real \& distinct, $y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$ is the general solution to our DEQ, and the solution space has basis $\left\{e^{r_{1} x}, e^{r_{2} x}\right\}$.
- If $r_{1}=r_{2}$, then $y(x)=c_{1} e^{r_{1} x}+c_{2} x e^{r_{1} x}$ is the general solution, and the solution space has basis $\left\{e^{r_{1} x}, x e^{r_{1} x}\right\}$.

This generalizes to nth order DEQs with $y^{(n)}, \ldots y^{\prime}, y$ and $r^{n}, \ldots r^{2}, r, 1$.

Exercises

Problem: \#36 Find the general solution: $\quad 2 y^{\prime \prime}+3 y^{\prime}=0$.
$2 r^{2}+3 r=0$.
$r(2 r+3)=0$.
$r=0,-\frac{3}{2} ;$
$y(x)=c_{1}+c_{2} e^{-\frac{3}{2} x}$.

Problem: \#44 Given the general solution $y(x)=c_{1} e^{10 x}+c_{2} e^{-10 x}$ of a homogeneous second order DEQ, find the DEQ in the form $a y^{\prime \prime}+b y^{\prime}+c y=0$ with constant coefficients.
$(r-10)(r+10)=0$
$r^{2}-100=0$.
$y^{\prime \prime}-100 y=0$.

Problem: \#31 $y_{1}=\sin x^{2}$ and $y_{2}=\cos x^{2}$ are linearly independent functions, but show that their Wronskian vanishes (is equal to zero) at $x=0$. Why does this imply that there is no differential equation having both y_{1} and y_{2} as (global) solutions, of the form $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0$, with both p_{1} and p_{2} continuous everywhere?

$$
\begin{gathered}
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\sin x^{2} & \cos x^{2} \\
2 x \cos x^{2} & -2 x \sin x^{2}
\end{array}\right| \\
=-2 x \sin ^{2} x^{2}-2 x \cos ^{2} x^{2} \\
\quad=-2 x\left(\sin ^{2} x^{2}+\cos ^{2} x^{2}\right)=-2 x .
\end{gathered}
$$

$-2 x$ vanishes at $x=0$.
"Why does this imply that there is no differential equation of the form $y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0$, with both p_{1} and p_{2} continuous everywhere, having both y_{1} and y_{2} as global solutions?"

In order for y_{1} and y_{2} to be linearly independent solutions of the equation $y^{\prime \prime}+p_{1} y^{\prime}+p_{2} y=0$
(with p_{1} and p_{2} both continuous) on an open interval I containing $x=0$,
the Wronskian of Solutions Theorem requires $W \neq 0$ on I.

