5.2: Gen. Solutions of Linear DEQs

Consider: $y^{(n)}+p_{1}(x) y^{(n-1)}+\ldots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)$.

Most of the results below are merely extensions of the $n=2$ case from the previous section, and the related proofs are nearly identical.

Principle of Superposition for Homogeneous DEQs Theorem: Let $y_{1}, y_{2}, \ldots, y_{n}$ be n solutions of the associated homogeneous linear DEQ of $(*)$ on the interval I. If $c_{1}, c_{2}, \ldots, c_{n}$ are constants, then the linear combination $y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$ is also a solution on I.

Existence and Uniqueness for Linear DEQs Theorem: Suppose that the functions $p_{1}, p_{2}, \ldots, p_{n}$, and f are continuous on the open interval I containing the point a. Then, given n numbers $b_{0}, b_{1}, \ldots, b_{n-1}$, the nonhomogeneous DEQ (*) has a unique (that is, one and only one) solution on the entire interval I that satisfies the n initial conditions:
$y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}, \quad \ldots, \quad y^{(n-1)}(a)=b_{n-1}$.

Thus we have an n th-order initial value problem.

As with the linear 1st order and 2nd order DEQs, the unique solutions to this nth order linear DEQ exist on the whole interval I.

Independence

How do we determine whether n solutions to our DEQ are linearly independent, so that we might form a general solution?

Recall that with two functions, we needed $f_{1}=c f_{2}$ on I for dependence, or $f_{1} \neq c f_{2}$ for independence.

Also recall that with n vectors \vec{v}_{i}, dependence was insured if $c_{1} \vec{v}_{i}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}=0$ with $c_{1}, c_{2}, \ldots, c_{n}$, not all zero. And independence was assured if $c_{1} \vec{v}_{i}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}=0$ required that $c_{1}, c_{2}, \ldots, c_{n}$, all be zero.

But now recall that functions ARE vectors in the real valued function vector space. Therefore, we have the following.

Definition - Linear Dependence of Functions: The n functions $f_{1}, f_{2}, \ldots, f_{n}$ are said to be linearly dependent on the interval I provided that there exists constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that $c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{n} f_{n}=0$ on I; that is, $c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0$ for all x in I.

Therefore, just as with n-tuple vectors, if functions are dependent, we can solve for one of the functions in terms of a linear combination of the others.

Wronskian of Solutions Theorem: Suppose that $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the associated homogeneous linear DEQ of (*) on an open interval I, where each p_{i} is continuous. Let $W=W\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

- If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly dependent, then $W \equiv 0$, at each point x in I.
- If $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent, then $W \neq 0$, at each point x in I.

Thus, there are just two possibilities: either $W=0$ everywhere on I, or $W \neq 0$ everywhere on I.

In the above theorem, let's prove the first bullet point:
that if $y_{1}, y_{2}, \ldots, y_{n}$ are linearly dependent, then $W \equiv 0$, at each point x in I.
Proof: Since we can assume dependence, we have that $c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}=0$ holds at each point x in I for some choice of $c_{1}, c_{2}, \ldots, c_{n}$, not all zero.

Next, differentiate this equation $n-1$ times in succession, obtaining the equations:

$$
\begin{gathered}
c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)=0 \\
c_{1} y_{1}^{\prime}(x)+c_{2} y_{2}^{\prime}(x)+\ldots+c_{n} y_{n}^{\prime}(x)=0 \\
\vdots \\
c_{1} y_{1}^{(n-1)}(x)+c_{2} y_{2}^{(n-1)}(x)+\ldots+c_{n} y_{n}^{(n-1)}(x)=0
\end{gathered}
$$

which still holds at each point x in I.

Observe that the unknowns in the above system are the c_{i}. Therefore, this can be rewritten as:
$\mathbf{A} \vec{c}=\overrightarrow{0}$, where $\vec{c}:=\left(c_{1}, \ldots, c_{n}\right)$ and $\mathbf{A}:=\left[\begin{array}{cccc}y_{1} & y_{2} & \ldots & y_{n} \\ y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{n}{ }^{\prime} \\ \vdots & \vdots & \vdots & \vdots \\ y_{1}^{(n-1)} & y_{2}^{(n-1)} & \ldots & y_{n}{ }^{(n-1)}\end{array}\right]$.

Now recall that a homogeneous $n \times n$ linear system of equations has a nontrivial solution if and only if it's coefficient matrix \mathbf{A} is not invertible.

We also learned non-invertibility only happens when the determinant of the coefficient matrix $|\mathbf{A}|$ is zero.

In this case, the determinant is recognizable as the Wronskian $W(x)$ of the y_{i}.

And since we know that the c_{i} are not all zero, it follows that $W(x) \equiv 0$, as we wished to prove.

The above is all well-and-good when the functions we are examining are solutions to a homogeneous DEQ. But what if you wish to know the independence of some functions on some open interval I which are not known to be solutions to a DEQ?

Here is a graphic that might clarify (or confuse) things for you...

Given some interval I, we wish to know if some functions $\{f(x), g(x), h(x), \ldots\}$

are independent or dependent on I. So form the Wronskian $W(x)=W(f, g, h, \ldots)$ and:
If you are lucky enough to know that your functions are solutions to a linear homogeneous differential equation with OTHERWISE... continuous coefficient functions.

Ind
$W(x) \neq 0$
Except possibly for
isolated pts where $W(x)=0$.

Consider: $y^{(n)}+p_{1}(x) y^{(n-1)}+\ldots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=f(x)$.
General Solutions of Homogeneous DEQs Theorem: Let's say you know that $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions of $(*)$'s associated homogeneous DEQ on an open interval I, where the p_{i} are continuous. If Y is any solution whatsoever to the homogeneous DEQ, then there exist numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that $Y(x)=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$ for all x in I. (i.e., all other solutions can be characterized as a linear combination of these linearly independent ones)

Solutions to Non-homogeneous DEQs Theorem: Let's say you know that y_{p} is a particular solution for the non-homogeneous DEQ $(*)$ on an open interval I, where the p_{i} and f are continuous. And suppose $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions of $(*)^{\prime}$'s associated homogeneous DEQ. Then if $Y(x)$ is any solution whatsoever to the nonhomogeneous DEQ, then there exist numbers $c_{1}, c_{2}, \ldots, c_{n}$ such that for all x in I we have: $Y(x)=y_{p}+\left(c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}\right)$.

Proof: Let Y and y_{p} be solutions to $(*)$.
Define $y_{c}:=Y-y_{p}$. Substituting this into the $(*)$'s associated homogeneous DEQ:

$$
\begin{aligned}
& \left(Y-y_{p}\right)^{(n)}+p_{1}(x)\left(Y-y_{p}\right)^{(n-1)}+\ldots+p_{n-1}(x)\left(Y-y_{p}\right)^{\prime}+p_{n}(x)\left(Y-y_{p}\right) \\
& =\left(Y^{(n)}+p_{1}(x) Y^{(n-1)}+\ldots+p_{n-1}(x) Y^{\prime}+p_{1}(x) Y\right)-\left(y_{p}^{(n)}+p_{1}(x) y_{p}^{(n-1)}+\ldots+p_{n-1}(x) y_{p}^{\prime}+p_{n}(x) y_{p}\right) \\
& =f(x)-f(x)=0 .
\end{aligned}
$$

Therefore, $y_{c}=Y-y_{p}$ is a solution to $(*)^{\prime}$'s associated homogeneous DEQ.

Recall that the complementary homogeneous solution can be written: $y_{c}=c_{1} y_{1}+\ldots+c_{n} y_{n}$.

But rearranging $y_{c}=Y-y_{p}$, we find $Y=y_{p}+y_{c}=y_{p}+\left(c_{1} y_{1}+\ldots+c_{n} y_{n}\right)$.

Recall our choice of Y as a solution to the nonhomogeneous DEQ was arbitrary.

So we have shown that a general solution Y of the nonhomogeneous DEQ is the sum of its complementary function y_{c} and any particular solution y_{p}.

From this theorem, we see that the general solutions are an " n-fold infinity" of solutions (by choosing $c_{1}, c_{2}, \ldots, c_{n}$). Similarly (and for the same underlying reason), the unique solution given by the existence theorem above implies an " n-fold infinity" of freedom in choosing initial conditions: $y(a)=b_{0}, \quad y^{\prime}(a)=b_{1}, \quad \ldots, \quad y^{(n-1)}(a)=b_{n-1}$.

Now notice that the trivial solution $y(x) \equiv 0$, is a solution to $y^{(n)}+p_{1}(x) y^{(n-1)}+\ldots+p_{n-1}(x) y^{\prime}+p_{n}(x) y=0$.

Furthermore, $y(x) \equiv 0$ is the only solution to the DEQ that satisfies the trivial initial conditions
$y(a)=0, \quad y^{\prime}(a)=0, \quad \ldots, \quad y^{(n-1)}(a)=0$.

Exercises

Problem: \#30 Verify that $y_{1}=x$ and $y_{2}=x^{2}$ are linearly independent solutions (on the entire real line) of the equation $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$. Also verify that $W\left(x, x^{2}\right)$ vanishes at $x=0$. Why do these observations not contradict part (b) of the Wronskian of Solutions Theorem?

Hint: Differentiate y_{1} to get y_{1}^{\prime} and $y_{1}^{\prime \prime}$, then substitute it into the equation to verify that y_{1} is a solution. Do the same thing with y_{2}. Let's assume we've done that (exercise for home).

To confirm linear independence, it is sufficient to note that you cannot represent x as $x=c x^{2}$, irrespective of what the constant c is.

Next, create your Wronskian:
$W\left(x, x^{2}\right)=\left|\begin{array}{ll}x & x^{2} \\ 1 & 2 x\end{array}\right|=2 x^{2}-x^{2}=x^{2}$, and verify that the result vanishes at $x=0$.

Finally, let's think about the Wronskian of Solutions Theorem: It assumes your equation has the form:

$$
y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=0,
$$

where p_{1}, p_{2} are continuous functions (on the interval of interest, near the initial condition).
However, if p_{1}, p_{2} are NOT continuous functions there, we should not expect the conclusions of the theorem to hold true.

When the equation $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$ is rewritten in the above form: $y^{\prime \prime}+\left(-\frac{2}{x}\right) y^{\prime}+\left(\frac{2}{x^{2}}\right) y=0$, the coefficient functions $p_{1}(x)=-\frac{2}{x}$ and $p_{2}(x)=\frac{2}{x^{2}}$ are not continuous at $x=0$. Thus, the assumptions of the theorem are not satisfied.

Problem: \#12 Use the Wronskian to prove that the functions $\{x, \cos (\ln x), \sin (\ln x)\}$ are linearly independent on the interval $x>0$.

$$
W=\left|\begin{array}{ccc}
x & \cos (\ln x) & \sin (\ln x) \\
1 & -\frac{\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x} \\
0 & -\frac{\frac{1}{x} \cos (\ln x)(x)-\sin (\ln x)}{x^{2}} & \frac{-\frac{1}{x} \sin (\ln x)(x)-\cos (\ln x)}{x^{2}}
\end{array}\right|=\left|\begin{array}{ccc}
x & \cos (\ln x) & \sin (\ln x) \\
1 & -\frac{\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x} \\
0 & \frac{-\cos (\ln x)+\sin (\ln x)}{x^{2}} & \frac{-\sin (\ln x)-\cos (\ln x)}{x^{2}}
\end{array}\right|
$$

$$
\begin{aligned}
& =x\left(-\frac{\sin (\ln x)}{x} \frac{-\sin (\ln x)-\cos (\ln x)}{x^{2}}-\frac{\cos (\ln x)}{x} \frac{-\cos (\ln x)+\sin (\ln x)}{x^{2}}\right)-\left(\cos (\ln x) \frac{-\sin (\ln x)-\cos (\ln x)}{x^{2}}-\sin (\ln x) \frac{-\cos (\ln x)+\sin (\ln x)}{x^{2}}\right) \\
& =\frac{\sin ^{2}(\ln x)+\sin (\ln x) \cos (\ln x)}{x^{2}}-\frac{-\cos ^{2}(\ln x)+\sin (\ln x) \cos (\ln x)}{x^{2}}+\frac{\cos (\ln x) \sin (\ln x)+\cos 2(\ln x)}{x^{2}}+\frac{-\sin (\ln x) \cos (\ln x)+\sin ^{2}(\ln x)}{x^{2}} .
\end{aligned}
$$

So, $W=x^{-2}\left[2 \cos ^{2}(\ln x)+2 \sin ^{2}(\ln x)\right]$
$=2 x^{-2}$.

And, W is nonzero (and defined) for $x>0$.
So, the functions $\{x, \cos (\ln x), \sin (\ln x)\}$ are linearly independent on the interval $x>0$.

