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5.2: Gen. Solutions of Linear DEQs

Consider: y�n� � p1�x�y�n�1� ���pn�1�x�y � � pn�x�y � f�x�. ���

Most of the results below are merely extensions of the n � 2 case from the previous section, and the related proofs are nearly

identical.

Principle of Superposition for Homogeneous DEQs Theorem: Let y1, y2,� , yn be n solutions of the associated homogeneous

linear DEQ of ��� on the interval I. If c1, c2,� , cn are constants, then the linear combination y � c1y1 � c2y2 ���cnyn is also a

solution on I.

Existence and Uniqueness for Linear DEQs Theorem: Suppose that the functions p1, p2,� , pn, and f are continuous on the

open interval I containing the point a. Then, given n numbers b0, b1,� , bn�1, the nonhomogeneous DEQ ��� has a unique (that

is, one and only one) solution on the entire interval I that satisfies the n initial conditions:

y�a� � b0, y ��a� � b1, � , y�n�1��a� � bn�1.

Thus we have an nth-order initial value problem.

As with the linear 1st order and 2nd order DEQs, the unique solutions to this nth order linear DEQ exist on the whole interval I.

Independence

How do we determine whether n solutions to our DEQ are linearly independent, so that we might form a general solution?

Recall that with two functions, we needed f1 � cf2 on I for dependence, or f1 � cf2 for independence.

Also recall that with n vectors v i, dependence was insured if c1 v i � c2 v 2 ���cn v n � 0 with c1, c2,� , cn, not all zero.

And independence was assured if c1 v i � c2 v 2 ���cn v n � 0 required that c1, c2,� , cn, all be zero.

But now recall that functions ARE vectors in the real valued function vector space. Therefore, we have the following.

Definition — Linear Dependence of Functions: The n functions f1, f2,� , fn are said to be linearly dependent on the interval I

provided that there exists constants c1, c2,� , cn, not all zero, such that c1f1 � c2f2 ���cnfn � 0 on I; that is,

c1f1�x� � c2f2�x� ���cnfn�x� � 0 for all x in I.

Therefore, just as with n-tuple vectors, if functions are dependent, we can solve for one of the functions in terms of a linear

combination of the others.

Wronskian of Solutions Theorem: Suppose that y1, y2,� , yn are n solutions of the associated homogeneous linear DEQ of ���
on an open interval I, where each pi is continuous. Let W � W�y1, y2,� , yn�.



� If y1, y2,� , yn are linearly dependent, then W � 0, at each point x in I.

� If y1, y2,� , yn are linearly independent, then W � 0, at each point x in I.

Thus, there are just two possibilities: either W � 0 everywhere on I, or W � 0 everywhere on I.

In the above theorem, let’s prove the first bullet point:

that if y1, y2,� , yn are linearly dependent, then W � 0, at each point x in I.

Proof: Since we can assume dependence, we have that c1y1 � c2y2 ���cnyn � 0 holds at each point x in I for some choice of

c1, c2,� , cn, not all zero.

Next, differentiate this equation n � 1 times in succession, obtaining the equations:

c1y1�x� � c2y2�x� ���cnyn�x� � 0

c1y1
��x� � c2y2

��x� ���cnyn
��x� � 0

�
c1y1

�n�1��x� � c2y2
�n�1��x� ���cnyn

�n�1��x� � 0

which still holds at each point x in I.

Observe that the unknowns in the above system are the c i. Therefore, this can be rewritten as:

Ac � 0, where c :� �c1,� , cn� and A :�

y1 y2 � yn

y1
�

y2
�

� yn
�

� � � �

y1
�n�1�

y2
�n�1�

� yn
�n�1�

.

Now recall that a homogeneous n � n linear system of equations has a nontrivial solution if and only if

it’s coefficient matrix A is not invertible.

We also learned non-invertibility only happens when the determinant of the coefficient matrix |A| is zero.

In this case, the determinant is recognizable as the Wronskian W�x� of the y i.

And since we know that the c i are not all zero, it follows that W�x� � 0, as we wished to prove. �

The above is all well-and-good when the functions we are examining are solutions to a homogeneous DEQ. But what if you wish

to know the independence of some functions on some open interval I which are not known to be solutions to a DEQ?

Here is a graphic that might clarify (or confuse) things for you�



Consider: y�n� � p1�x�y�n�1� ���pn�1�x�y � � pn�x�y � f�x�. ���

General Solutions of Homogeneous DEQs Theorem: Let’s say you know that y1, y2,� , yn are linearly independent solutions

of ��� �s associated homogeneous DEQ on an open interval I, where the pi are continuous. If Y is any solution whatsoever to the

homogeneous DEQ, then there exist numbers c1, c2,� , cn such that Y�x� � c1y1 � c2y2 ���cnyn for all x in I. (i.e., all other

solutions can be characterized as a linear combination of these linearly independent ones)

Solutions to Non-homogeneous DEQs Theorem: Let’s say you know that yp is a particular solution for the non-homogeneous

DEQ ��� on an open interval I, where the pi and f are continuous. And suppose y1, y2,� , yn are linearly independent solutions of

��� �s associated homogeneous DEQ. Then if Y�x� is any solution whatsoever to the nonhomogeneous DEQ, then there exist

numbers c1, c2,� , cn such that for all x in I we have: Y�x� � yp � �c1y1 � c2y2 ���cnyn�.

Proof: Let Y and yp be solutions to ���.

Define yc :� Y � yp. Substituting this into the ��� �s associated homogeneous DEQ:

�Y � yp�
�n�

� p1�x��Y � yp�
�n�1� ���pn�1�x��Y � yp�

�
� pn�x��Y � yp�

� Y�n� � p1�x�Y�n�1� ��� pn�1�x�Y � � p1�x�Y � yp
�n�

� p1�x�yp
�n�1�

��� pn�1�x�yp
� � pn�x�yp

� f�x� � f�x� � 0.

Therefore, yc � Y � yp is a solution to ��� �s associated homogeneous DEQ.

Recall that the complementary homogeneous solution can be written: yc � c1y1 ���cnyn.

But rearranging yc � Y � yp, we find Y � yp � yc � yp � �c1y1 ���cnyn�.

Recall our choice of Y as a solution to the nonhomogeneous DEQ was arbitrary.

So we have shown that a general solution Y of the nonhomogeneous DEQ

is the sum of its complementary function yc and any particular solution yp. �



From this theorem, we see that the general solutions are an "n-fold infinity" of solutions (by choosing c1, c2,� , cn). Similarly

(and for the same underlying reason), the unique solution given by the existence theorem above implies an "n-fold infinity" of

freedom in choosing initial conditions: y�a� � b0, y ��a� � b1, � , y�n�1��a� � bn�1.

Now notice that the trivial solution y�x� � 0, is a solution to y�n� � p1�x�y�n�1� ���pn�1�x�y � � pn�x�y � 0.

Furthermore, y�x� � 0 is the only solution to the DEQ that satisfies the trivial initial conditions

y�a� � 0, y ��a� � 0, � , y�n�1��a� � 0.

Exercises

Problem: #30 Verify that y1 � x and y2 � x2 are linearly independent solutions (on the entire real line) of the equation

x2y �� � 2xy � � 2y � 0. Also verify that W x, x2 vanishes at x � 0. Why do these observations not contradict part �b� of the

Wronskian of Solutions Theorem?

Hint: Differentiate y1 to get y1
� and y1

��, then substitute it into the equation to verify that y1 is a solution. Do the same thing with

y2. Let’s assume we’ve done that (exercise for home).

To confirm linear independence, it is sufficient to note that you cannot represent x as x � cx2, irrespective of what the constant c

is.

Next, create your Wronskian:

W x, x2 �
x x2

1 2x
� 2x2 � x2 � x2, and verify that the result vanishes at x � 0.

Finally, let’s think about the Wronskian of Solutions Theorem: It assumes your equation has the form:

y �� � p1�x�y � � p2�x�y � 0,

where p1, p2 are continuous functions (on the interval of interest, near the initial condition).

However, if p1, p2 are NOT continuous functions there, we should not expect the conclusions of the theorem to hold true.

When the equation x2y �� � 2xy � � 2y � 0 is rewritten in the above form: y �� � �� 2
x �y � � 2

x2
y � 0, the coefficient functions

p1�x� � � 2
x and p2�x� � 2

x2
are not continuous at x � 0. Thus, the assumptions of the theorem are not satisfied.

Problem: #12 Use the Wronskian to prove that the functions �x, cos�ln x�, sin�ln x�� are linearly independent on the

interval x � 0.

W �

x cos�ln x� sin�ln x�

1 �
sin�ln x�

x
cos�ln x�

x

0 �
1
x cos�ln x��x�� sin�ln x�

x2

� 1
x sin�ln x��x�� cos�ln x�

x2

�

x cos�ln x� sin�ln x�

1 �
sin�ln x�

x
cos�ln x�

x

0
�cos�ln x�� sin�ln x�

x2

� sin�ln x�� cos�ln x�

x2



� x �
sin�ln x�

x
� sin�ln x�� cos�ln x�

x2
�

cos�ln x�
x

�cos�ln x�� sin�ln x�

x2
� cos�ln x� � sin�ln x�� cos�ln x�

x2
� sin�ln x� �cos�ln x�� sin�ln x�

x2

�
sin2�ln x��sin�ln x�cos�ln x�

x2
�

�cos2�ln x�� sin�ln x�cos�ln x�

x2
�

cos�ln x� sin�ln x��cos2�ln x�

x2
�

�sin�ln x�cos�ln x�� sin2�ln x�

x2
.

So, W � x�2�2 cos2�ln x� � 2 sin2�ln x��

� 2x�2.

And, W is nonzero (and defined) for x � 0.

So, the functions �x, cos�ln x�, sin�ln x�� are linearly independent on the interval x � 0.


