5.4 Mechanical Vibrations

Mass, Spring, Damper Model

Mechanical Vibrations are modeled by the DEQ: $F_{T}=F_{S}+F_{d}+F_{e}(t)$, where
$F_{T}=m x^{\prime \prime}$ represents the total force on an object.
$F_{d}=-c x^{\prime}$ represents the damping force, $F_{S}=-k x$ represents the spring force,
and $F_{e}(t)$ represents any external force.
So our DEQ becomes: $m x^{\prime \prime}=-k x-c x^{\prime}+F_{e}(t)$.

Rewriting in normal form gives: $x^{\prime \prime}+\frac{c}{m} x^{\prime}+\frac{k}{m} x=\frac{1}{m} F_{e}(t) \quad$ (it's non-homogenous!).

When $F_{e}=0$, we say the DEQ is free, otherwise, we refer to it as being forced.

Simple Pendulum

Label the counterclockwise angle the pendulum makes with the vertical as function of time: $\theta(t)$.

To determine the DEQs of a physical system, very frequently
we start with a conservation law, then derive the DEQs.

Conservation of Mechanical Energy: $T+V=C$,
where T, V is kinetic and potential energy, and C is some constant.

Let's calculate kinetic energy: $T=\frac{1}{2} m v^{2}$.

For this we will need a distance/position function $s(t)$.

Circumference of a circle $2 \pi r=2 \pi L$.
Therefore, distance along arc from vertical is $s=L \theta$.

Velocity is $\frac{d s}{d t}=\frac{d(L \theta)}{d t}=L \theta^{\prime}$ and $T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{d s}{d t}\right)^{2}=\frac{1}{2} m L^{2}\left(\frac{d \theta}{d t}\right)^{2}$.

Now let's calculate potential energy $m g h$.
To determine height, we need to know length of the triangle side opposite the mass.
Observe $\cos \theta=\frac{a}{h}=\frac{a}{L}$, where a is the side length of interest.
So, $a=L \cos \theta$ and $h=L-L \cos \theta=L(1-\cos \theta)$.

Therefore, $T+V=\frac{1}{2} m L^{2}\left(\frac{d \theta}{d t}\right)^{2}+L(1-\cos \theta)=C$.

Taking the derivative with respect to t :
$m L^{2}\left(\frac{d \theta}{d t}\right)\left(\frac{d^{2} \theta}{d t^{2}}\right)+m g L \sin \theta \frac{d \theta}{d t}=0$,
and making the very reasonable assumption that $\frac{d \theta}{d t}, m, L \neq 0$
(pendulum is moving, as a nonzero mass and length), we divide to get:
$\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \sin \theta=0$.

In real situations there is friction $c \theta^{\prime}$ due to air resistance on m and at the connection where the string is fixed. Also, in many applications, we are most interested in this system when the pendulum is moving only slightly. In such situations, $\theta \approx \sin \theta$. This is an approximation, but making this substitution makes the analysis much simpler. So we get:

$$
\theta^{\prime \prime}+c \theta^{\prime}+k \theta=0, \text { where } k=\frac{g}{L} .
$$

Free Undamped Motion: $m x^{\prime \prime}+k x=0$.
(homogenous)
Normal form:
$\omega_{0}:=\sqrt{\frac{k}{m}} \quad \Rightarrow \quad x^{\prime \prime}+\omega_{0}^{2} x=0$, where ω_{0} is the circular frequency in $\frac{\mathrm{rad}}{\sec }$.

Using our skills from previous section, $r^{2}+\omega_{0}^{2}=0$ when $r= \pm \sqrt{-\omega_{0}^{2}}= \pm i \omega_{0}$.
$e^{i \omega_{0} t}=\cos \omega_{0} t+i \sin \omega_{0} t$.
The Gen. Solution is: $x(t)=A \cos \omega_{0} t+B \sin \omega_{0} t$.

We wish to alter the solution $x(t)$ to make it simpler.
We want: $x(t)=C \cos \left(\omega_{0} t-\alpha\right)$,
where C turns out to be the amplitude of the vibration!

So, let A and B be the legs of a right triangle, then the hypotenus: $C=\sqrt{A^{2}+B^{2}}$.

With angle α (opposite of B), recall we have: $\cos \alpha=\frac{A}{C}, \quad \sin \alpha=\frac{B}{C}$,
where $\alpha=\left\{\begin{array}{cr}\tan ^{-1} \frac{B}{A} & \text { if } A, B>0 \text { (1st quadrant), } \\ \pi+\tan ^{-1} \frac{B}{A} & \text { if } A<0 \text { (2nd/3rd quadrant), } \\ 2 \pi+\tan ^{-1} \frac{B}{A} & \text { if } A>0, B<0 \text { (4th quadrant). }\end{array}\right.$

Then, $x(t)=A \cos \omega_{0} t+B \sin \omega_{0} t=C\left(\frac{A}{C} \cos \omega_{0} t+\frac{B}{C} \sin \omega_{0} t\right)$

$$
=C\left(\cos \alpha \cos \omega_{0} t+\sin \alpha \sin \omega_{0} t\right)
$$

Recall the Trigonometric Identity: $\cos x \cos y+\sin y \sin x=\cos (x-y)=\cos (y-x)$.

So, $x(t)=C \cos \left(\omega_{0} t-\alpha\right)$, where C is the amplitude,
ω_{0} is the circular frequency in $\frac{\mathrm{rad}}{\mathrm{sec}}$, and α is the phase angle.

Period of Motion: $T=\frac{2 \pi}{\omega_{0}}$ sec. \quad Frequency: $v=\frac{1}{T}=\frac{\omega_{0}}{2 \pi}$ in $\frac{\text { cycles }}{\text { sec }}$.

Free Damped Motion: $x^{\prime \prime}+\frac{c}{m} x^{\prime}+\frac{k}{m} x=0$
$\Rightarrow x^{\prime \prime}+2 p x^{\prime}+\omega_{0}^{2} x=0$, where $p:=\frac{c}{2 m}>0$.
$r^{2}+2 p r+\omega_{0}^{2}=0 \quad \Rightarrow \quad r=\frac{-2 p \pm \sqrt{4 p^{2}-4 \omega_{0}^{2}}}{2}=-p \pm \sqrt{p^{2}-\omega_{0}^{2}}$.

The nature of the roots depend upon the sign of: $p^{2}-\omega_{0}^{2}=\frac{c^{2}}{4 m^{2}}-\frac{k}{m}=\frac{c^{2}-4 k m}{4 m^{2}}$.

Three situations: $\quad c>\sqrt{4 k m}, \quad c=\sqrt{4 k m}, \quad c<\sqrt{4 k m}$.

Critical Damping $c_{c r}=\sqrt{4 k m}$.

- Overdamped Case: $c>c_{c r} . \quad x(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$, where $r_{1}, r_{2}<0$.
- Critically Damped Case: $c=c_{c r} . \quad x(t)=e^{-p t}\left(c_{1}+c_{2} t\right)$.
- Underdamped Case: $c<c_{c r}$.
$x(t)=e^{-p t}\left(A \cos \omega_{1} t+B \sin \omega_{1} t\right)$, where $\omega_{1}:=\sqrt{\omega_{0}^{2}-p^{2}}$ (damped circ. freq.)
Alternatively: $C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$, (where $C=\sqrt{A^{2}+B^{2}}, \cos \alpha=\frac{A}{C}, \sin \alpha=\frac{B}{C}$).

Notice that in all three cases, $x(t) \rightarrow 0$ as $t \rightarrow+\infty$.

Underdamped

Overdamped

Exercises

Problem: ~\#17a A mass $m=81$ is attached to both a spring with spring constant $k=4$, and a dashpot with damping constant $c=36$. Find the position function $x(t)$ and determine whether the motion is overdamped, underdamped, or critically damped.
$m x^{\prime \prime}+c x^{\prime}+k x=0, \quad 81 x^{\prime \prime}+36 x^{\prime}+4 x=0$

To determine which equation to use: $c_{c r}=\sqrt{4 \mathrm{~km}}=\sqrt{4 \cdot 4 \cdot 81}=4 \cdot 9=36$.

And we see that $c=36=c_{c r}$, so \ldots

So we are in the critically damped case: $\quad x(t)=e^{-p t}\left(c_{1}+c_{2} t\right)$.
$p=\frac{c}{2 m}=\frac{36}{2.81}=\frac{2}{9}$.
$x(t)=e^{-\frac{2}{9} t}\left(c_{1}+c_{2} t\right)$.

for $c_{1}=1$ and $c_{2}=2$

for $c_{1}=1$ and $c_{2}=-2$

Problem: ~\#17b A mass $m=1$ is attached to both a spring with spring constant $k=9$, and a dashpot with damping constant $c=8$. Find the position function $x(t)$ and determine whether the motion is overdamped, underdamped, or critically damped.
$m x^{\prime \prime}+c x^{\prime}+k x=0, \quad x^{\prime \prime}+8 x^{\prime}+9 x=0$

To determine which equation to use: $c_{c r}=\sqrt{4 \mathrm{~km}}=\sqrt{4 \cdot 9 \cdot 1}=6<8=c$.

And we see that $c=8>c_{c r}$, so \ldots

So we are in the over-damped case: $x(t)=c_{1} x^{r_{1} t}+c_{2} x^{r_{2} t}$.

$$
r^{2}+8 r+9 \Rightarrow r=\frac{-8 \pm \sqrt{64-4 \cdot 9}}{2}=-4 \pm \sqrt{7} .
$$

$$
x(t)=c_{1} e^{(-4+\sqrt{7}) t}+c_{2} e^{(-4-\sqrt{7}) t}
$$

for $c_{1}=1$ and $c_{2}=-2$

$$
\text { for } c_{1}=1 \text { and } c_{2}=-2
$$

Problem: \#23 This problem deals with a highly simplified model of a car weighing 3,200 pounds (mass $m=100$ slugs in fps units). Assume that the suspension system acts like a single spring, and its shock absorbers (if connected) act like a single dashpot, so that its vertical vibrations (over a smooth flat road) satisfy: $m x^{\prime \prime}+c x^{\prime}+k x=0$.
a) Find the stiffness coefficient k of the spring if the car undergoes free vibrations (v) of 80 cycles per minute when its shock absorbers are disconnected.

Shock absorbers disconnected? $\quad m x^{\prime \prime}+k x=0$. How to find k ?

With $m=100$ slugs we get: $\omega_{0}=\sqrt{\frac{k}{100}}, \quad \quad x^{\prime \prime}+\omega_{0}^{2} x=0$.
"cycles per minute" is frequency (v), but we need to convert this into ω_{0} which is circular frequency in units of $\frac{\mathrm{rad}}{\mathrm{s}}$.
$\omega_{0}=\frac{80 \text { cycles }}{1 \mathrm{~min}} \frac{1 \mathrm{~min}}{60 \mathrm{sec}}(2 \pi)=\frac{8 \pi}{3} \frac{\mathrm{rad}}{\mathrm{s}}$.

So, $\frac{8 \pi}{3}=\sqrt{\frac{k}{100}}, \quad \frac{k}{100}=\left(\frac{8 \pi}{3}\right)^{2}, \quad k=\frac{6400 \pi^{2}}{9} \approx 7,018 \mathrm{lb} / \mathrm{ft}$.
b) With the shock absorbers connected, the car is initially set into vibration by driving it over a bump, and the resulting damped vibrations have a frequency of 78 cycles per minute.
After how long will the time-varying amplitude be 1% of its initial value?

Since there are vibrations ...
We are not in the overdamped/critically damped cases. We are dealing with the underdamped case.

The gen. solution for this case is : $\quad x(t)=C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$, where $\omega_{1}=\sqrt{\omega_{0}^{2}-p^{2}}$.
"After how long will the time-varying amplitude be 1% of its initial value?"

When does $C e^{-p t}=0.01 C e^{-p \cdot t_{0}} ? \quad$ The initial time value is $t_{0}=0$, becomes: $e^{-p t}=0.01$.

$$
\Rightarrow \quad-p t=\ln (0.01) \quad \Rightarrow \quad t=\frac{\ln (0.01)}{-p} .
$$

So, we must first solve for p, where $p=\frac{c}{2 m}=\frac{c}{200}$.

Which means we first must solve for c.
$\omega_{1}=\sqrt{\omega_{0}^{2}-p^{2}}$
$=\sqrt{\frac{k}{m}-\frac{c^{2}}{4 m^{2}}}=\sqrt{\frac{4 k m-c^{2}}{4 m^{2}}}=\frac{\sqrt{4 k m-c^{2}}}{2 m}$
$\approx \frac{\sqrt{2,807,200-c^{2}}}{200}$.

Which means we first must solve for $\omega_{1}!!!$

However, we are given that the damped frequency v is: $\frac{78 \text { cycles }}{1 \mathrm{~min}}$ or $\frac{78 \text { cycles }}{1 \mathrm{~min}} \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=\frac{78 \text { cycles }}{60 \mathrm{sec}}$.

So, the damped circular frequency ω_{1} is: $\frac{78 \text { cycles }}{60 \mathrm{sec}}\left(\frac{2 \pi \mathrm{rad}}{1 \text { cycle }}\right) \approx 8.1681 \mathrm{rad} / \mathrm{sec}$.

So, $\quad \frac{\sqrt{2807200-c^{2}}}{200}=8.1681, \quad \sqrt{2807200-c^{2}}=1633.6$
$2807200-c^{2}=2668648.96, \quad c^{2}=2807200-2668648.96=138551.04$
$c=\sqrt{138551.04} \approx 372.22 \mathrm{lb} /(\mathrm{ft} / \mathrm{sec})$.

Hence: $p=\frac{c}{2 m}=\frac{372.22}{200} \approx 1.8611$.
$t=\frac{\ln (0.01)}{-p} \approx \frac{\ln (0.01)}{-1.8611} \approx 2.47 \mathrm{sec} . \quad($ whew $!)$

And plugging in our calculations for p and ω_{1}, we have: $x(t) \approx C e^{-1.86 t} \cos (8.17 t-\alpha)$.

$$
\alpha=0 \text { and } C=1
$$

For the 3rd Midterm/Final exam, a less complicated task you should be able to check is whether a damping constant would result in overdamped, underdamped, or critically damped vibrations. You do this by comparing your damping constant c to $\sqrt{4 \mathrm{~km}}$. In the above case, $c=372.22$ and $\sqrt{4 \mathrm{~km}}=\sqrt{4 \cdot 7018 \cdot 100} \approx 1676$. Therefore $c<\sqrt{4 \mathrm{~km}}$ and the vibrations are underdamped, as we surmised earlier.

Problem: \#33 The local maxima and minima of $x(t)=C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$, occur where: $\tan \left(\omega_{1} t-\alpha\right)=-\frac{p}{\omega_{1}}$. Consecutive maxima occur at times $x_{1}=x\left(t_{1}\right)$ and $x_{2}=x\left(t_{2}\right)$. Assume: $t_{2}-t_{1}=\frac{2 \pi}{\omega_{1}}$.
Deduce that: $\ln \frac{x_{1}}{x_{2}}=\frac{2 \pi p}{\omega_{1}}\left(\right.$ recall that $\left.p=\frac{c}{2 m}\right)$.

If $x_{1}=x\left(t_{1}\right)$ and $x_{2}=x\left(t_{2}\right)$ are two successive local maxima, then...

$$
\cos \left(\omega_{1} t_{2}-\alpha\right)=\cos \left(\omega_{1} t_{1}-\alpha\right)
$$

$\omega_{1} t_{2}-\alpha=\omega_{1} t_{1}-\alpha+2 \pi$, and $\omega_{1} t_{2}=\omega_{1} t_{1}+2 \pi$ so \ldots
$x_{1}=C e^{-p t_{1}} \cos \left(\omega_{1} t_{1}-\alpha\right)$,
$x_{2}=C e^{-p t_{2}} \cos \left(\omega_{1} t_{2}-\alpha\right)=C e^{-p t_{2}} \cos \left(\left(\omega_{1} t_{1}+2 \pi\right)-\alpha\right)=C e^{-p t_{2}} \cos \left(\omega_{1} t_{1}-\alpha\right)$

Hence, $\frac{x_{1}}{x_{2}}=\frac{C e^{-p p_{1}} \cos \left(\omega_{1} t_{1}-\alpha\right)}{C e^{-p p_{2}} \cos \left(\omega_{1} t_{1}-\alpha\right)}=e^{-p\left(t_{1}-t_{2}\right)}$,
and therefore, $\ln \left(\frac{x_{1}}{x_{2}}\right)=-p\left(t_{1}-t_{2}\right)=-\left(\frac{c}{2 m}\right)\left(\frac{2 \pi}{\omega_{1}}\right)=\frac{2 \pi p}{\omega_{1}}$.

