5.5 - Non-Homogeneous DEQs \& Undetermined Coefficients

Non-homogeneous DEQs are of the form: $L y=f(x)$, where L is a differential operator explained in 5.3.
For example: $y^{(7)}+2 y^{(3)}+3 y^{\prime \prime}+4 y^{\prime}+5 y=f(x)$. How to solve them?

Earlier we learned that general solutions have the form $y=y_{c}+y_{p}$, where y_{c} is the complementary solution we get from the characteristic equation, and y_{p} is any particular solution. But how do we find a y_{p} ?

Undetermined Coefficients, the Justification

To solve the DEQ above, we need some function y such that when we take various derivatives $\left(y^{(7)}, y^{(3)}, y^{\prime \prime}, y^{\prime}, y\right)$, multiply them by some constants $\left(y^{(7)}, 2 y^{(3)}, 3 y^{\prime \prime}, 4 y^{\prime}, 5 y\right)$, and add them together, we get $f(x)$. So if we limit the type of expression $f(x)$ can be, we might come up with a good guess for y.

Polynomial: If we assume $f(x)$ is a polynomial, note that the derivative of a polynomial is a polynomial. So a reasonable guess y_{i} for a particular solution that we could substitute into the left-hand side of the DEQ would be a polynomial $y_{i}:=A_{1}+A_{2} x+\ldots+A_{n-1} x^{n}$. The A_{j} are yet-to-be-determined coefficients and n is the highest power of x in $f(x)$. Substituting y_{i} into the left-hand side and taking derivatives as necessary, we could then compare the two sides of the equation to determine the undetermined coefficients A_{i}.

Exponential: Similarly, if $f(x)$ is an exponential functions (e.g., $7 e^{5 x}$), note that the derivative of an exponential is also an exponential $\left(\left(7 e^{5 x}\right)^{\prime}=35 e^{5 x}\right)$. So a reasonable guess y_{i} for a particular solution that we could substitute into the left-hand side of the DEQ would be an exponential $A e^{5 x}$. The A is a yet-to-be-determined coefficients. Substituting y_{i} into the left-hand side and taking derivatives as necessary, we could then compare the two sides of the equation to determine the undetermined coefficient A.

Trigonometric: Similarly, if $f(x)$ is a sine or cosine function (e.g., $7 \cos 3 x$), note that the derivative of a \sin / \cos is also a \sin / \cos. So a reasonable guess y_{i} for a particular solution that we could substitute into the left-hand side of the DEQ would be an $A \sin 3 x+B \cos 3 x$. The A, B are yet-to-be-determined coefficients. Substituting y_{i} into the left-hand side and taking derivatives as necessary, we could then compare the two sides of the equation to determine the undetermined coefficients A, B.

Even better, we can merge these three facts into a procedure (seen below) which allows for $f(x)$ to combine these types of functions.

Linear Independence

But before we write down the procedure, there is still one difficulty to deal with. The processes laid out above may result in a y_{i} which has terms that are linearly dependent with terms in y_{c}.

For example from $y^{\prime \prime \prime}-3 r y^{\prime \prime}+3 r^{2} y^{\prime}-r^{3} y=(2 x-3) e^{r x}$ you would calculate $y_{c}=c_{1} e^{r x}+c_{2} x e^{r x}+c_{3} x^{2} e^{r x}$, and $y_{i}=A e^{r x}+B x e^{r x}$. So what is wrong with this?

First observe that the terms in y_{i} are linearly dependent with terms in y_{c}
$A e^{r x}=k c_{1} e^{r x}$ where $k=\frac{A}{c_{1}}$, and Bxe $e^{r x}=k c_{2} x e^{r x}$ where $k=\frac{B}{c_{2}}$.

In other words, y_{i} just consists of solutions from our y_{c}.

But being solutions to the homogeneous version of our DEQ means that substituting them into our nonhomogeneous DEQ will just give us $0=(2 x-3) e^{r x}$. So it is not a solution to the nonhomogeneous DEQ.

We certainly don't get the opportunity to solve for the undetermined coefficients A, B in y_{i}.

So how do we amend y_{0} to produce the solutions we are looking for?
The trick is to first rewrite our DEQ above as: $(D-r)^{3} y=2 x e^{r x}-3 e^{r x}$.

Then we recall something from section 5.3, that is $(D-r)^{k}\left[u(x) e^{r x}\right]=D^{k}(u(x)) e^{r x}$.
So if we multiply both sides of our DEQ by $(D-r)^{2}$, we have:

$$
\begin{aligned}
& (D-r)^{5} y=(D-r)^{2}\left(2 x e^{r x}-3 e^{r x}\right)=(D-r)^{2}\left(2 x e^{r x}\right)-(D-r)^{2}\left(3 e^{r x}\right) \\
& \quad=D^{2}(2 x) e^{r_{1} x}-D^{2}(3) e^{r_{1} x}=0 \cdot e^{r_{1} x}-0 \cdot e^{r_{1} x}=0 .
\end{aligned}
$$

In other words, any solution y which satisfies our original nonhomogeneous DEQ,
$\left((D-r)^{3} y=(2 x-3) e^{r x}\right)$ also satisfies $(D-r)^{5} y=0$.

Observe from our previous analysis that solutions to this DEQ can take the form:
$y(x)=c_{1} e^{r x}+c_{2} x e^{r x}+c_{3} x^{2} e^{r x}+A x^{3} e^{r x}+B x^{4} e^{r x}$, where I have suggestively chosen notation for the constant coefficients.

In other words, if I multiply y_{i} by x^{3}, these are likely to produce solutions to my nonhomogeneous DEQ.

Undetermined Coefficients, the Method

The method of Undetermined Coefficients assumes f is of the form:
$f(x)=A x^{k} e^{r x} \cos (t x)$ or $A x^{k} e^{r x} \sin (t x)$, where $k, r, t \geq 0$
(or $f(x)$ can consist of several terms of this form added together)

Steps to solving...

- Determine complementary solution $y_{c}=c_{1} y_{1}+c_{2} y_{2} . \quad($ where $f(x)=0)$

Example, for $y^{\prime \prime}+2 y=f(x)$, we calculate: $y_{c}=c_{1} x+c_{2} e^{-2 x}$.

- Define a pre-trial solution: $y_{i}:=p_{1}(x)+\ldots+p_{n}(x)$.

Example, if $f(x)=\sin x+7 x e^{-2 x}$, then $y_{i}=A \sin x+B \cos x+(C+D x) e^{-2 x}$.

Find the pre-trial solution in three steps. For each term in $f(x)$:
\diamond Trig-Step: If there is $\sin t x$ or $\cos t x$ in the term, write: $\sin t x+\cos t x$.
\diamond Exponential-Step: Next, if there is an exponential $e^{r x}$, multiply what you have by $e^{r x}$.
Example: $e^{r x} \sin t x+e^{r x} \cos t x$.
\checkmark Power-Step: Finally, determine k (the power of x). Note that you may have $k=0$.
Then, multiply each term of what you have by $\left(A+B x+C x^{2}+\ldots+L x^{k}\right)$, with different constants for each term. If $k=0$, then you just multiply by A.
Example: $A e^{r x} \sin t x+B x e^{r x} \sin t x+C e^{r x} \cos t x+D x e^{r x} \cos t x$, when $k=1$.

Next, we need for the terms of our trial solution to be linearly independent from our complimentary solution.

So, for each term p_{i} of our pre-trial solution: $y_{i}=p_{1}(x)+\ldots+p_{n}(x)$, determine the smallest power s_{i} of x, such that $x^{s_{i}} p_{i}$ isn't a constant multiple of any term in our complementary solution: $y_{c}=c_{1} y_{1}+c_{2} y_{2}$. (we're removing duplicates to acheive independence of the two sets of solutions).

Putting it together we have a trial solution: $y_{\text {trial }}=x^{s_{1}} p_{1}+\ldots+x^{s_{n}} p_{n}$.
(continuing with our example (*) above: $y_{\text {trial }}=A \sin x+B \cos x+C x e^{-2 x}+D x^{2} e^{-2 x}$).

- Substitute $y_{\text {trial }}$ into $L y=f(x)$ (taking derivatives as necessary), and determine the coefficients (A, B, \ldots) by comparing the two sides of the equation.
The result we label y_{p} (our particular solution).
- General Solution: $y=y_{c}+y_{p}$. (combination of complementary \& particular solution)

Here's a video explanation from Khan Academy:
https://www.khanacademy.org/math/differential-equations/second-order-differential-equations\#undetermined-coefficients

But what if $f(x)$ isn't in the form required by Undetermined Coefficients?

Variation of Parameters, the Justification

So how do we form y_{p} ? We saw in undetermined coefficients that sometimes the solutions to our DEQ are similar to the solutions (y_{1}, y_{2}, etc.) in $y_{c}=c_{1} y_{1}+c_{2} y_{2}+\ldots$, but multiplied by some power of x.

What if we made the assumption that something similar happens for more complicated $f(x)$; that our particular solution takes the form: $y_{p}=u_{1} y_{1}+u_{2} y_{2}+\ldots$, where u_{i} are functions of x.

Below we work with an $2 n$ d order DEQ, but the process works for nth order DEQs.
If: $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)$, with $y_{c}=c_{1} y_{1}+c_{2} y_{2}$,
we write a particular solution guess as $y_{p}:=u_{1} y_{1}+u_{2} y_{2}$.

If we were to substitute this into our DEQ, there would be two unknown functions u_{1}, u_{2}, but only one equation (constraint) in
the form of our DEQ. Generally, one would need two equations to pin down both u_{1}, u_{2}.

We could write down a new constraint, but how would we know if it was correct? That's easy, if the resulting constraint results in u_{1}, u_{2} which solve our DEQ, then it was correct. And although our textbook doesn't tell us why it works, the constraint $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ leads us to solutions of the DEQ.

So let's substitute y_{p} into our DEQ, using our 2nd constraint along the way to simplify things in order to derive an algorithm for solving this type of DEQ.

Note: $y_{p}^{\prime}=\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right)$.

Applying our second constraint, this becomes $y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}$.

Taking another derivative: $y_{p}^{\prime \prime}=\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+\left(u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}\right)$.

Recall that both y_{1}, y_{2} satisfy the homogeneous DEQ: $y_{i}^{\prime \prime}+P y_{i}^{\prime}+Q y_{i}=0$. Rearranging: $y_{i}^{\prime \prime}=-P y_{i}^{\prime}-Q y_{i}$.

So substituting this into our second derivative:

$$
\begin{aligned}
y_{p}^{\prime \prime}= & \left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+\left(u_{1}\left(-P y_{1}^{\prime}-Q y_{1}\right)+u_{2}\left(-P y_{2}^{\prime}-Q y\right)\right) \\
& =\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)-P \cdot\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)-Q \cdot\left(u_{1} y_{1}+u_{2} y_{2}\right) \\
& =\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)-P y_{p}^{\prime}-Q y_{p} .
\end{aligned}
$$

Substituting these into our DEQ:

$$
\left[\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)-P y_{p}^{\prime}-Q y_{p}\right]+P y_{p}^{\prime}+Q y_{p}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x) .
$$

So our two constraints become: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$ and $u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)$.

Variation of Parameters, the Method

This is for non-homogeneous DEQs $L y=f(x)$ not in the form necessary for Undetermined Coefficients.

Steps to solving...

1. Determine the complementary solution: $y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.
2. Differentiate: y_{1}, y_{2} to get $y_{1}^{\prime}, y_{2}^{\prime}$.
3. Write down: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$, and $u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)$; where u_{1}^{\prime}, u_{2}^{\prime} are unknown.
4. Solve for u_{1}^{\prime} and $u_{2}^{\prime} \quad$ (two equations, two unknowns).
5. Integrate u_{1}^{\prime} and u_{2}^{\prime}, (using zeros as the constants of integration).
6. Particular Solution is: $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
7. As above, the Gen. Solution is: $y_{g}=y_{c}+y_{p}$.

There is another way to characterize this.
Observe that if we solve for u_{1}^{\prime} in the 1st equation, we have $u_{1}^{\prime}=-\frac{u_{2}^{\prime} y_{2}}{y_{1}}$.

And substituting this in the 2nd equation: $\left(-\frac{u_{2}^{\prime} y_{2}}{y_{1}}\right) y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=u_{2}^{\prime}\left(-\frac{y_{2}}{y_{1}} y_{1}^{\prime}+y_{2}^{\prime}\right)=f(x)$.

And solving for $u_{2}^{\prime}=\frac{y_{1} \cdot f(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}$, giving us: $u_{1}^{\prime}=-\frac{\left(\frac{y_{1} \cdot f(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}}\right) y_{2}}{y_{1}}=-\frac{y_{2} \cdot f(x)}{y_{1} y_{2}^{\prime} y_{2}^{\prime} y_{1}^{\prime} y_{2}}$.

Observe that $W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}$

Therefore, we have $u_{2}^{\prime}=\frac{y_{1} \cdot f(x)}{W}$, and $u_{1}^{\prime}=-\frac{y_{2} \cdot f(x)}{W}$.

So, alternatively to steps 2-6 above we have:

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-y_{1} \int \frac{y_{2} \cdot f(x)}{W} d x+y_{2} \int \frac{y_{1} \cdot f(x)}{W} d x \text {, where } W\left(y_{1}, y_{2}\right) \text { is the Wronskian. }
$$

Exercises

Problem: \#26 The roots of the equation $r^{2}-6 r+13=0$ are $r=3 \pm 2 i$.
Using the undetermined coefficients method, write down the general form of a particular solution for: $y^{\prime \prime}-6 y^{\prime}+13 y=x e^{3 x} \sin 2 x$ (this means you don't solve for the coefficients).
$e^{(3+2 i) x}=e^{3 x}(\cos 2 x+i \sin 2 x)$
$y_{c}=c_{1} e^{3 x} \cos 2 x+c_{2} e^{3 x} \sin 2 x$.
$y_{i}=(A+B x) e^{3 x} \sin 2 x+(C+D x) e^{3 x} \cos 2 x \quad$ (pre-trial solution)

Clearing up any linear dependence between y_{i} and y_{c}, we get:
$y_{\text {trial }}=\left(A x+B x^{2}\right) e^{3 x} \sin 2 x+\left(C x+D x^{2}\right) e^{3 x} \cos 2 x$

General form of a Particular Solution:

$$
y_{g}=y_{c}+y_{\text {trial }}=\left(c_{1} e^{3 x} \cos 2 x+c_{2} e^{3 x} \sin 2 x\right)+\left(A x+B x^{2}\right) e^{3 x} \sin 2 x+\left(C x+D x^{2}\right) e^{3 x} \cos 2 x .
$$

Problem: \#18 Find a particular solution y_{p} of $y^{(4)}-5 y^{\prime \prime}+4 y=e^{x}-x e^{2 x}$.
$r^{4}-5 r^{2}+4=0$,
$\left(r^{2}-4\right)\left(r^{2}-1\right)$

$$
r^{2}=\{1,4\} .
$$

$r= \pm 1, \pm 2$.
$y_{c}=c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{-2 x}+c_{4} e^{2 x}$.
$y_{i}=A e^{x}+(B+C x) e^{2 x} \quad$ (pre-trial solution)
$y_{\text {trial }}=A x e^{x}+B x e^{2 x}+C x^{2} e^{2 x}$

We need to determine the fourth derivative so that we can plug this into our original equation.

$$
\begin{aligned}
y_{\text {trial }}^{\prime} & =\left(A x e^{x}+A e^{x}\right)+\left(B e^{2 x}+2 B x e^{2 x}\right)+\left(2 C x e^{2 x}+2 C x^{2} e^{2 x}\right), \\
& =(A x+A) e^{x}+(2 B x+B) e^{2 x}+(2 C x+2 C) x e^{2 x} . \\
y_{\text {trial }}^{\prime \prime} & =(A x+2 A) e^{x}+(4 B x+4 B) e^{2 x}+\left(4 C x^{2}+8 C x+2 C\right) e^{2 x} . \\
y_{\text {trial }}^{\prime \prime \prime} & =(A x+3 A) e^{x}+(8 B x+12 B) e^{2 x}+\left(8 C x^{2}+24 C x+12 C\right) e^{2 x} . \\
y_{\text {trial }}^{(4)} & =(A x+4 A) e^{x}+(16 B x+32 B) e^{2 x}+\left(16 C x^{2}+64 C x+48 C\right) e^{2 x} .
\end{aligned}
$$

Recall the original equation: $y^{(4)}-5 y^{\prime \prime}+4 y=e^{x}-x e^{2 x}$.
So the LHS trial version is: $(A x+4 A) e^{x}+(16 B x+32 B) e^{2 x}+\left(16 C x^{2}+64 C x+48 C\right) e^{2 x}$

$$
-5\left[(A x+2 A) e^{x}+(4 B x+4 B) e^{2 x}+\left(4 C x^{2}+8 C x+2 C\right) e^{2 x}\right]+4\left[A x e^{x}+B x e^{2 x}+C x^{2} e^{2 x}\right]
$$

$$
\begin{aligned}
= & (A x+4 A) e^{x}+(16 B x+32 B) e^{2 x}+\left(16 C x^{2}+64 C x+48 C\right) e^{2 x} \\
& -\left[(5 A x+10 A) e^{x}+(20 B x+20 B) e^{2 x}+\left(20 C x^{2}+40 C x+10 C\right) e^{2 x}\right]+\left[4 A x e^{x}+4 B x e^{2 x}+4 C x^{2} e^{2 x}\right] \\
& =-6 A e^{x}+(12 B+38 C) e^{2 x}+24 C x e^{2 x} .
\end{aligned}
$$

Now what?
$-6 A e^{x}+(12 B+38 C) e^{2 x}+24 C x e^{2 x}=e^{x}-x e^{2 x}$
$-6 A=1, \quad 12 B+38 C=0, \quad 24 C=-1$
$A=-\frac{1}{6}, \quad C=-\frac{1}{24}, \quad 12 B+38\left(-\frac{1}{24}\right)=0, \quad 12 B=\frac{19}{12}, \quad B=\frac{19}{144}$.

Recall: $y_{\text {trial }}=A x e^{x}+B x e^{2 x}+C x^{2} e^{2 x}$

So our particular solution is...
$y_{p}=-\frac{1}{6} x e^{x}+\frac{19}{144} x e^{2 x}-\frac{1}{24} x^{2} e^{2 x}$

And even though the question did not ask for it, our general solution would be...
$y=y_{p}+y_{c}=\left(-\frac{1}{6} x e^{x}+\frac{19}{144} x e^{2 x}-\frac{1}{24} x^{2} e^{2 x}\right)+\left(c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{-2 x}+c_{4} e^{2 x}\right)$. (whew!)

Problem: \#34 Solve the initial value problem: $y^{\prime \prime}+y=\cos x ; \quad y(0)=1, \quad y^{\prime}(0)=-1$.
$r^{2}+1=0, \quad r= \pm i, \quad \Rightarrow \quad e^{i x}=\cos x+i \sin x$

So, $y_{c}=c_{1} \cos x+c_{2} \sin x$;

Finding a trial solution...
$y_{i}=A \cos x+B \sin x$
$y_{\text {trial }}=x(A \cos x+B \sin x)$

Differentiating $y_{\text {trial }}$ to plug back into our equation...
$y_{\text {trial }}^{\prime}=(-A \sin x+B \cos x) x+(A \cos x+B \sin x)=(B x+A) \cos x+(-A x+B) \sin x$

$$
\begin{aligned}
y_{\text {trial }}^{\prime \prime} & =B \cos x-(B x+A) \sin x+(-A) \sin x+(-A x+B) \cos x \\
& =(-A x+2 B) \cos x+(-B x-2 A) \sin x
\end{aligned}
$$

Plugging them back into $y^{\prime \prime}+y=\cos x$, we get:
$[(-A x+2 B) \cos x+(-B x-2 A) \sin x]+[A x \cos x+B x \sin x]$
$=2 B \cos x-2 A \sin x=\cos x$.

Determining our coefficients...
$2 B=1$, and $-2 A=0 . \quad A=0$ and $B=\frac{1}{2}$.
$y_{p}=\frac{1}{2} x \sin x$.

Therefore, our general solution is...
$y_{g}=y_{c}+y_{p}=c_{1} \cos x+c_{2} \sin x+\frac{1}{2} x \sin x, \quad$ And...

Using the initial conditions to solve for c_{1} and $c_{2} \ldots$
$1=c_{1} \cos 0-1 \sin 0+\frac{1}{2}(0) \sin 0=c_{1}$.
$y^{\prime}=-c_{1} \sin x+c_{2} \cos x+\frac{1}{2} \sin x+\frac{1}{2} x \cos x$
$-1=-c_{1} \sin 0+c_{2} \cos 0+\frac{1}{2} \sin 0+\frac{1}{2}(0) \cos 0=c_{2}$.

Plugging these into $y \ldots$
$y(x)=\cos x-\sin x+\frac{1}{2} x \sin x$.

So first need to obtain y_{1}, y_{2}, from complementary solution.
$r^{2}-4=0, \quad r= \pm 2, \quad y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}$.

So, $y_{1}=e^{2 x}, \quad y_{2}=e^{-2 x}$, and $\quad y_{1}^{\prime}=2 e^{2 x}, \quad y_{2}^{\prime}=-2 e^{-2 x}$.

Variation of Parameters involves writing down: $\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0\right)$ and $\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=f(x)\right)$. So:

$$
\begin{align*}
& u_{1}^{\prime} e^{2 x}+u_{2}^{\prime} e^{-2 x}=0, \tag{1}\\
& 2 u_{1}^{\prime} e^{2 x}-2 u_{2}^{\prime} e^{-2 x}=x e^{x} . \tag{2}
\end{align*}
$$

Solving for $u_{1}^{\prime}, u_{2}^{\prime}$, first start with the simpler equation (1):

$$
\begin{equation*}
u_{1}^{\prime}=-\frac{u_{2}^{\prime}}{e^{4 x}} . \tag{3}
\end{equation*}
$$

Plugging this into (2), and then solving for u_{2}^{\prime} :
$2\left(-\frac{u_{2}^{\prime}}{e^{4 x}}\right) e^{2 x}-2 u_{2}^{\prime} e^{-2 x}=x e^{x}$
$-2 \frac{u_{2}^{\prime}}{e^{2 x}}-2 \frac{u_{2}^{\prime}}{e^{2 x}}=-4 \frac{u_{2}^{\prime}}{e^{2 x}}=x e^{x}$
$u_{2}^{\prime}=-\frac{1}{4} x e^{3 x}$.

Plugging this into (3) to solve for $u_{1}^{\prime} \ldots$
$u_{1}^{\prime}=-\frac{u_{2}^{\prime}}{e^{4 x}}=-\frac{\left(-\frac{1}{4} x e^{3 x}\right)}{e^{4 x}}=\frac{1}{4} x e^{-x}$.

Now to integrate (4) and (5) to find u_{1} and $u_{2} \ldots$

$$
\begin{aligned}
u_{2}= & \int u_{2}^{\prime} d x=-\frac{1}{4} \int x e^{3 x} d x=-\frac{1}{4}\left[\frac{1}{3} x e^{3 x}-\frac{1}{3} \int e^{3 x} d x\right] \quad \text { (using integration by parts) } \\
& =-\frac{1}{4}\left[\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}\right]=\left(\frac{1}{36}-\frac{1}{12} x\right) e^{3 x} .
\end{aligned}
$$

$u_{1}=\int u_{1}^{\prime} d x=\frac{1}{4} \int x e^{-x} d x=\frac{1}{4}\left[-x e^{-x}+\int e^{-x} d x\right]=\frac{1}{4}\left[-x e^{-x}-e^{-x}\right]=-\left(\frac{1}{4} x+\frac{1}{4}\right) e^{-x}$.

So our particular solution is...

$$
\begin{aligned}
y_{p}= & u_{1} y_{1}+u_{2} y_{2}=\left[-\left(\frac{1}{4} x+\frac{1}{4}\right) e^{-x}\right] e^{2 x}+\left[\left(\frac{1}{36}-\frac{1}{12} x\right) e^{3 x}\right] e^{-2 x} \\
& =-\left(\frac{1}{4} x+\frac{1}{4}\right) e^{x}+\left(\frac{1}{36}-\frac{1}{12} x\right) e^{x}=\left(\left(\frac{1}{36}-\frac{1}{12} x\right)-\left(\frac{1}{4} x+\frac{1}{4}\right)\right) e^{x} \\
& =-\left(\frac{1}{3} x+\frac{2}{9}\right) e^{x} .
\end{aligned}
$$

And even though the question did not ask for it, our general solution would be...
$y=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} e^{-2 x}-\left(\frac{1}{3} x+\frac{2}{9}\right) e^{x}$.

Alternatively, we can work this problem using the Wronskian method:

Observe the Wronskian is: $W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}e^{2 x} & e^{-2 x} \\ 2 e^{2 x} & -2 e^{-2 x}\end{array}\right|=-2-2=-4$.

So, $y_{p}=-y_{1} \int \frac{y_{2} \cdot f(x)}{W} d x+y_{2} \int \frac{y_{1} \cdot f(x)}{W} d x=-e^{2 x} \int \frac{e^{-2 x} \cdot x x^{x}}{-4} d x+e^{-2 x} \int \frac{e^{2 x} \cdot x x^{x}}{-4} d x$

$$
=\frac{1}{4} e^{2 x} \int x e^{-x} d x-\frac{1}{4} e^{-2 x} \int x e^{3 x} d x
$$

Recall: $\int x e^{-x} d x=-x e^{-x}+\int e^{-x} d x=-x e^{-x}-e^{-x}=-(x+1) e^{-x} . \quad$ (using integration by parts)
and: $\int x e^{3 x} d x=\frac{1}{3} x e^{3 x}-\frac{1}{3} \int e^{3 x} d x=\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}=\left(\frac{1}{3} x-\frac{1}{9}\right) e^{3 x}$.

So, $y_{p}=-\frac{1}{4} e^{x}(x+1)-\frac{1}{4} e^{x}\left(\frac{1}{3} x-\frac{1}{9}\right)=-\frac{1}{4} e^{x}\left(\frac{8}{9}+\frac{4}{3} x\right)=-\left(\frac{1}{3} x+\frac{2}{9}\right) e^{x}$, as above.

