MATH 2243: Linear Algebra \& Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

Download this overhead here: bit.ly/2QCchg3

5.6: Forced Oscillations and Resonance

Forced Swing Oscillations

Forced Yo-Yo

Forced oscillation with damping:

Equation: $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$, where $F(t)=F_{0} \cos \omega t$, or $F(t)=F_{0} \sin \omega t$.
F_{0} represents the amplitude of the forced oscillation, and ω is the circular frequency of the external force $F(t)$. Distinguish this from ω_{0} and ω_{1} which we learned about earlier being the undamped and damped circular frequencies of our non-forced system.

Forced oscillation without damping:

Equation: $m x^{\prime \prime}+k x=F(t)$, where $F(t)=F_{0} \cos \omega t$, or $F(t)=F_{0} \sin \omega t$.
We now know how to calculate the complementary homogeneous solution:
$x_{c}=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t$, where $\omega_{0}=\sqrt{\frac{k}{m}}$, is the natural (undamped) frequency of the system. The resulting motion for this forced oscillation is a superposition of the oscillations ω_{0} and ω.

Spring Opposing Displacement

Let's determing how the external force $F_{0} \cos \omega t$ effects the Amplitude of the solution
A spring opposes static displacement, so the contribution of F_{0} to the solution's amplitude is altered by the spring constant k :
Static Displacement of Spring: $x_{s d}=\frac{F_{0}}{k}$ results from constant force with amplitude F_{0}. Also, just like when pushing a child on a swing, the more the forced oscillation ω (the push) is in sync with the system's oscillation ω_{0} (the child's swinging), the more amplification (the higher the child will swing). So:
Amplification Factor: $\rho=\frac{1}{\left|1-\frac{\omega^{2}}{\omega_{0}^{2}}\right|}$.
Resonance: Is the fact that ρ can be arbitrarily large, when ω is near ω_{0}.
The resulting contribution to the solution's amplitude is $\rho \frac{F_{0}}{k}$, so the solution takes the form: $x(t)=x_{c}+x_{p}=C \cos \left(\omega_{0} t-\alpha\right) \pm \rho \frac{F_{0}}{k} \cos \omega t$.
Observe that there is no limit on the amount of amplitude we can get for our particular solution from $\rho \frac{F_{0}}{k}$.

Modeling Mechanical Systems:

Kinetic Energy: $T=\frac{1}{2} m\left(x^{\prime}\right)^{2}=\frac{1}{2} m v^{2}=\int_{0}^{v} m \bar{v} d \bar{v}$, for movement of a mass m with velocity v. While $T=\frac{1}{2} I \omega^{2}$ for rotation of object $\mathrm{w} /$ "momentum of inertia" I, and angular velocity ω.
Potential Energy: $V=\frac{1}{2} k x^{2}=\int_{0}^{x} k \bar{x} d \bar{x}$, for a spring constant k displaced a distance x. $V=m g h$, gravitational potential energy of mass m at height h above reference.

Damped Forced Oscillations: $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$

Situations: $\quad c>c_{c r}, \quad c=c_{c r}, \quad$ or $\quad c<c_{c r}$, where $c_{c r}=\sqrt{4 k m}$.
Recall, the gen. solution takes the form: $x=x_{c}+x_{p}$.
The associated complementary solution, $x_{c}(t)$ is a transient solution (notationally $x_{t r}$), in that it goes to zero as $t \rightarrow+\infty$. Over time, this leaves only the particular solution $x_{p}(t)$, which we refer to as the steady periodic oscillation (notationally $x_{s p}$).

Practical Resonance: Unlike the unbounded resonance of the undamped oscillations, the resonance of a damped oscillation (in the real world) has a finite amplitude. Similar to critical damping $c_{c r}$ above, we have the concept of resonant damping $c_{r}=\sqrt{2 k m}$. So, If you calculate: $x_{s p}(t)=A \cos \omega t+B \sin \omega t=C(\omega) \cos (\omega t-\alpha):$

- For $c \geq c_{r}=\sqrt{2 k m}, C(\omega)$ is a steadily decreasing function of ω (not of time!!).
- For $c<c_{r}=\sqrt{2 k m}, C(\omega)$ has a local maximum value (Practical Resonance), when ω is near ω_{0}, then $C(\omega)$ approaches zero as $\omega \rightarrow+\infty$.

Therefore, underdamped systems with forced oscillation typically have amplitudes:

- $C(\omega)$ large if ω is close to the critical resonance frequency $\left(\omega_{0}\right)$.
- $C(\omega)$ close to $\frac{F_{0}}{k}$ (Static Displacement of Spring), if ω is small.
- $C(\omega)$ very small if ω is very large.

Videos of Disastrous Resonance: Collapsing Bridge from wind.
Shattering Glass from sound waves.

Problem: \#10 Given the equation $x^{\prime \prime}+3 x^{\prime}+3 x=8 \cos 10 t+6 \sin 10 t$, find the steady periodic solution: $x_{s p}(t)=C \cos (\omega t-\alpha)$.

$$
\begin{aligned}
& r^{2}+3 r+3 \Rightarrow r=\frac{-3 \pm \sqrt{9-12}}{2}=-\frac{3}{2} \pm i \frac{\sqrt{3}}{2} \\
& x_{c}=e^{-\frac{3}{2} t}\left(c_{1} \cos \frac{\sqrt{3}}{2} t+c_{2} \sin \frac{\sqrt{3}}{2} t\right)
\end{aligned}
$$

Forming Trial Solution:

$A \cos 10 t+B \sin 10 t$

Comparing this to the complementary solution reveals no linear dependence, so...
$x_{\text {trial }}=A \cos 10 t+B \sin 10 t$
$x_{\text {trial }}^{\prime}=-10 A \sin 10 t+10 B \cos 10 t, \quad x_{\text {trial }}^{\prime \prime}=-100 A \cos 10 t-100 \sin B 10 t$

$$
\begin{aligned}
x_{\text {trial }}^{\prime \prime} & +3 x_{\text {trial }}^{\prime}+3 x_{\text {trial }} \\
& =(-100 A \cos 10 t-100 B \sin 10 t)+3(-10 A \sin 10 t+10 B \cos 10 t)+3(A \cos 10 t+B \sin 10 t) \\
& =(-100 A \cos 10 t-100 B \sin 10 t)+(-30 A \sin 10 t+30 B \cos 10 t)+(3 A \cos 10 t+3 B \sin 10 t) \\
& =(30 B-100 A+3 A) \cos 10 t+(3 B-100 B-30 A) \sin 10 t \\
& =(30 B-97 A) \cos 10 t+(-97 B-30 A) \sin 10 t \\
& \stackrel{?}{=} 8 \cos 10 t+6 \sin 10 t
\end{aligned}
$$

Comparing sides of the equation:

$30 B-97 A=8$, and $-97 B-30 A=6$

$$
\begin{aligned}
& B=\frac{8}{30}+\frac{97}{30} A, \quad-97\left(\frac{4}{15}+\frac{97}{30} A\right)-30 A=-\frac{10309}{30} A-\frac{388}{15}=6, \\
& A=-\frac{30\left(6+\frac{388}{15}\right)}{10309}=-\frac{956}{10309} . \\
& B=\frac{8}{30}+\frac{97}{30}\left(-\frac{956}{10309}\right)=-\frac{342}{10309} .
\end{aligned}
$$

$x_{s p}(t)=-\frac{956}{10309} \cos 10 t-\frac{342}{10309} \sin 10 t \quad$ Are we done?
"Find the steady periodic solution: $x_{s p}(t)=C \cos (\omega t-\alpha) . "$
$C=\sqrt{\left(-\frac{956}{10309}\right)^{2}+\left(-\frac{342}{10309}\right)^{2}}=\sqrt{\left(\frac{913936}{106275481}\right)+\left(\frac{116964}{106275481}\right)}=\sqrt{\frac{100}{10309}}=\frac{10 \sqrt{61}}{793}$.
$x_{s p}(t)=\frac{10 \sqrt{61}}{793} \cos (10 t-\alpha)$.
where $\alpha=(? ? ?)+\tan ^{-1} \frac{B}{A}$

$$
\frac{B}{A}=\frac{-\frac{342}{10309}}{-\frac{956}{10309}}=\frac{171}{478}
$$

Recall: $\alpha=\left\{\begin{array}{cr}\tan ^{-1} \frac{B}{A} & \text { if } A, B>0 \text { (1st quadrant), }, \\ \pi+\tan ^{-1} \frac{B}{A} & \text { if } A<0 \text { (2nd/3rd quadrant), } \\ 2 \pi+\tan ^{-1} \frac{B}{A} & \text { if } A>0, B<0 \text { (4th quadrant). }\end{array}\right.$
$\alpha=\pi+\tan ^{-1} \frac{171}{478} \approx 3.4851 . \quad$ (third quadrant angle)
$x_{s p}(t) \approx \frac{10 \sqrt{61}}{793} \cos (10 t-3.485)$.

$$
\frac{10 \sqrt{61}}{793} \cos (10 t-3.485)
$$

Problem: \#13 Find and plot the steady periodic solution $x_{s p}(t)=C \cos (\omega t-\alpha)$ of the differential equation $x^{\prime \prime}+2 x^{\prime}+26 x=600 \cos 10 t$, with initial conditions $x(0)=10$, and $x^{\prime}(0)=0$. Also, find and plot the actual solution: $x(t)=x_{t r}(t)+x_{s p}(t)=x_{c}(t)+x_{p}(t)$.

$$
\begin{aligned}
& r^{2}+2 r+26=0, \quad r=\frac{-2 \pm \sqrt{4-104}}{2}=-1 \pm 5 i \\
& \begin{aligned}
x_{c}(t) & =x_{\text {tr }}(t)=e^{-t}\left(c_{1} \cos 5 t+c_{2} \sin 5 t\right) \\
x_{0}= & x_{\text {trial }}=A \cos 10 t+B \sin 10 t \\
x_{\text {trial }}^{\prime} & =-10 A \sin 10 t+10 B \cos 10 t \\
x_{\text {trial }}^{\prime \prime} & =-100 A \cos 10 t-100 B \sin 10 t
\end{aligned} \\
& \begin{aligned}
& x_{\text {trial }}^{\prime \prime}+2 x_{\text {trial }}^{\prime}+26 x_{\text {trial }}= \\
&(-100 A \cos 10 t-100 B \sin 10 t)+2(-10 A \sin 10 t+10 B \cos 10 t)+26(A \cos 10 t+B \sin 10 t) \\
&=(-100 A \cos 10 t-100 B \sin 10 t)+(-20 A \sin 10 t+20 B \cos 10 t)+(26 A \cos 10 t+26 B \sin 10 t) \\
&=(20 B-100 A+26 A) \cos 10 t+(26 B-100 B-20 A) \sin 10 t \\
&=(20 B-74 A) \cos 10 t+(-74 B-20 A) \sin 10 t \\
& \xlongequal{?}
\end{aligned}
\end{aligned}
$$

Comparing sides of the equation:

$20 B-74 A=600, \quad-74 B-20 A=0$.
$B=-\frac{20}{74} A, \quad 20\left(-\frac{20}{74} A\right)-74 A=-\frac{2938}{37} A=600, \quad A=-\frac{600 \cdot 37}{2938}=-\frac{11100}{1469}$

$$
B=-\frac{20}{74}\left(-\frac{11100}{1469}\right)=\frac{3000}{1469} .
$$

So, $x_{s p}(t)=-\frac{11100}{1469} \cos 10 t+\frac{3000}{1469} \sin 10 t . \quad$ Now what?

Putting it in the right form:

$$
C=\sqrt{\left(-\frac{11100}{1469}\right)^{2}+\left(\frac{3000}{1469}\right)^{2}}=\frac{300}{\sqrt{1469}} .
$$

$$
x_{s p}(t)=\frac{300}{\sqrt{1469}} \cos (10 t-\alpha)
$$

Determining α :

$$
\begin{aligned}
& \frac{B}{A}=\frac{\frac{3000}{1469}}{-\frac{11100}{1499}}=-\frac{10}{37} \\
& \alpha=\pi+\tan ^{-1} \frac{10}{-37} \approx 2.88 \quad \text { (second quadrant angle) }
\end{aligned}
$$

So, $x_{s p}(t) \approx \frac{300}{\sqrt{1469}} \cos (10 t-2.88)$.

Gen. solution: $x(t)=x_{t r}(t)+x_{s p}(t)=e^{-t}\left(c_{1} \cos 5 t+c_{2} \sin 5 t\right)+\frac{300}{\sqrt{1469}} \cos (10 t-2.8776)$. Are we done?
"Find the actual solutions $x(t)=x_{s p}(t)+x_{t r}(t)$ that satisfies the given initial conditions.

$$
x(0)=10, \quad x^{\prime}(0)=0 . "
$$

To keep the accuracy, and not deal with decimals, I revert back to the previous version for this...

$$
x(t)=x_{t r}+x_{s p}(t)=e^{-t}\left(c_{1} \cos 5 t+c_{2} \sin 5 t\right)-\frac{11100}{1469} \cos 10 t+\frac{3000}{1469} \sin 10 t
$$

$$
x^{\prime}(t)=\left[e^{-t}\left(5 c_{2} \cos 5 t-5 c_{1} \sin 5 t\right)-e^{-t}\left(c_{1} \cos 5 t+c_{2} \sin 5 t\right)\right]+\frac{111000}{1469} \sin 10 t+\frac{30000}{1469} \cos 10 t
$$

$$
x^{\prime}(0)=0=\left[e^{0}\left(5 c_{2} \cos 0-5 c_{1} \sin 0\right)-e^{0}\left(c_{1} \cos 0+c_{2} \sin 0\right)\right]+\frac{111000}{1469} \sin 0+\frac{30000}{1469} \cos 0
$$

$$
=\left[\left(5 c_{2}\right)-\left(c_{1}\right)\right]+\frac{30000}{1469}
$$

$$
x(0)=10=e^{0}\left(c_{1} \cos 0+c_{2} \sin 0\right)-\frac{11100}{1469} \cos 0+\frac{3000}{1469} \sin 0=c_{1}-\frac{11100}{1469}
$$

$$
c_{1}=\frac{11100}{1469}+10=\frac{25790}{1469}, \quad c_{2}=\frac{1}{5} c_{1}-\frac{1}{5} \frac{30000}{1469}=\frac{1}{5} \frac{25790}{1469}-\frac{1}{5} \frac{30000}{1469}=-\frac{842}{1469} .
$$

Therefore, $x(t)=e^{-t}\left(\frac{25790}{1469} \cos 5 t-\frac{842}{1469} \sin 5 t\right)+\frac{300}{\sqrt{1469}} \cos (10 t-2.88)$.
We done?

We could convert the complementary solution into the form: $x_{t r}(t)=C \cos (\omega t-\alpha)$.

$$
\begin{aligned}
& \begin{array}{l}
x_{t r}(t)=\frac{1}{1469} e^{-t}(25790 \cos 5 t-842 \sin 5 t) \\
\quad C=\sqrt{25790^{2}+(-842)^{2}}=2 \sqrt{166458266} \\
x_{t r}(t)=\frac{2 \sqrt{166458266}}{1469} e^{-t} \cos (5 t-\beta) \\
\quad \frac{B}{A}=\frac{-842}{25790}=-\frac{421}{12895} \\
\quad \beta=2 \pi+\tan ^{-1} \frac{-421}{12895} \approx 6.2505 . \quad \text { (fourth quadrant angle) } \\
x(t) \approx \frac{2 \sqrt{166458266}}{1469} e^{-t} \cos (5 t-6.2505)+\frac{300}{\sqrt{1469}} \cos (10 t-2.8776)
\end{array}
\end{aligned}
$$

$$
x \text { (red), and } x_{s p} \text { (blue) }
$$

Problem 19: A mass weighing 100 pounds (mass $m=3.125$ slugs in fps units) is attached to the end of a spring that is stretched 1 inch, by a force of 100 pounds (duh!). Another force ($F_{0} \cos \omega t$) acts on the mass. At what frequency in hertz (cycles/sec) will resonant oscillations occur? Neglect damping.

Resonant frequency is $\omega_{0}=\sqrt{\frac{k}{m}}=\sqrt{\frac{k}{3.125}}$.
$m=3.125$ slugs $(f p s)$, and $k=\frac{\text { Force }}{\text { Distance }}=\frac{100 \mathrm{lbs}}{\frac{1}{12} f t}=1200 \mathrm{lb} / f t$.

So the resonant frequency is $\omega_{0}=\sqrt{\frac{1200}{3.125}}$ (units?)

$$
=\sqrt{384} \frac{\mathrm{rad}}{\mathrm{sec}} \approx 19.6 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

\# of $\mathrm{Hz}=\frac{\omega_{0}}{2 \pi}=\frac{\sqrt{384}}{2 \pi} \approx 3.12 \mathrm{~Hz}$.

So, resonance will occur when $\frac{\omega}{2 \pi} \approx \frac{\omega_{0}}{2 \pi}=3.12 \mathrm{~Hz}$.

If $c=12$, and $\omega=90$, what behavior should we expect from the amplitude?

Resonant damping: $c_{r}=\sqrt{2 k m}=\sqrt{2 \cdot 1200 \cdot 3.125} \approx 86.6$.

Recall $\omega_{0} \approx 19.6$, and "for $c<\sqrt{2 k m}, C(\omega)$ reaches a maximum value (Practical Resonance), at some value of $\omega<\omega_{0}$, then it approaches zero as $\omega \rightarrow+\infty$."

We should expect the amplitude to be less than the practical resonance.

If $c=200$ and ω is very large, what behavior should we expect from the amplitude?

Recall: For $c \geq \sqrt{2 k m}, C(\omega)$ is a steadily decreasing function of ω.

So the amplitude should be small.

If $c=12$, and $\omega<20$, what behavior should we expect from the amplitude?

Download this overhead here: bit.ly/2QCchg3

