MATH 2243: Linear Algebra \& Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

6.1: Eigenvalues

For an $n \times n$ matrix \mathbf{A}, if we have: $\mathbf{A} \vec{v}=\lambda \vec{v}$, then the scalar λ is an eigenvalue, and \vec{v} is an eigenvector,
where \vec{v} is a nonzero vector, $\lambda \in \mathbb{C}$, and \mathbf{I} is the identity matrix (or equavalently $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}=\overrightarrow{0}$).

vector (red), eigenvector (blue) under \mathbf{A}

(see animated during class)

Motivation: Recall how points in the \mathbb{R}^{n} vector space are characterized as linear combinations of the unit vectors u_{x} along the axes; $(1,-3,5)=1(1,0,0)-3(0,1,0)+5(0,0,1)=1 u_{x}-3 u_{y}+5 u_{z}$.

Analogously, solutions in the solution space to a system of DEQs $\vec{x}^{\prime}=\mathbf{A} \vec{x}$ can be characterized as linear combinations of $e^{\lambda t} \vec{v}_{\lambda}$, where $\lambda, \vec{v}_{\lambda}$ are the eigenvalues, eigenvectors of \mathbf{A} (we will learn about this in chapter 7).

Applications: Modeling migration patterns, predator-prey relationships, fluid dynamic, and many more.

Calculation

Given \mathbf{A}, how do we find its eigenvalues and eigenvectors?
We want λ, \vec{v} such that: $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}=\overrightarrow{0}$.

Observe that this is a homogeneous system of n equations, where our n unknowns are the components of \vec{v}.

Recall that such a system has a nontrivial solution $(\vec{v} \neq 0)$ when $|\mathbf{A}-\lambda \mathbf{I}|=0$.

So by imposing this restriction, we can identify the various λ.

Characteristic Equation: $|\mathbf{A}-\lambda \mathbf{I}|=$

$$
=\left|\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right|=\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\
a_{21} & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{(n-1) n} \\
a_{n 1} & \ldots & a_{n(n-1)} & a_{n n}-\lambda
\end{array}\right|=0 .
$$

Finding eigenvalues and eigenvectors of \mathbf{A} :
-Solve $|\mathbf{A}-\lambda \mathbf{I}|=c_{1} \lambda^{n}+c_{2} \lambda^{n-1} \ldots+c_{0}=0$, for all λ_{k} (should be n of them, including multiplicity)
Example: Prob. 21 below

- Then, for each λ_{k}, solve $\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right) \vec{v}=\overrightarrow{0}$ to find the eigenvector(s) \vec{v} for λ_{k}.

$$
\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right) \vec{v}=\left[\begin{array}{ccc}
a_{11}-\lambda_{k} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}-\lambda_{k}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]=\overrightarrow{0}
$$

Example: Prob. 21 below

If the components of \mathbf{A} are real, then any complex eigenvalues will occur in conjugate pairs (i.e., $\lambda_{ \pm}=a \pm b i$).
Example: Prob. 30 below

Eigenspaces:

Each eigenvalue λ_{k} associated with \mathbf{A} will produce a set of (one or more) linearly independent eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{m}\right\}$.

For each λ_{k}, the associated eigenvectors form a basis for a subspace, $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{m}\right\}=\mathbb{R}^{m} \subseteq \mathbb{R}^{n}$.

This subspace is called an eigenspace, and is FULL of eigenvectors which are linear combinations of the discovered basis.

The eigenspace of each λ_{k} serves as the solution space to $\left(\mathbf{A}-\lambda_{k} I\right) \vec{v}=\overrightarrow{0}$.

Video Tutorial (visually rich and intuitive): https://youtu.be/PFDu9oVAE-g

Exercises

Problem: \# 21 Find the (real) eigenvalues, the associated eigenvectors, and a basis for each eigenspace for the matrix:
$\mathbf{A}=\left[\begin{array}{ccc}4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2\end{array}\right]$
$|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{ccc}4-\lambda & -3 & 1 \\ 2 & -1-\lambda & 1 \\ 0 & 0 & 2-\lambda\end{array}\right|$

$$
=(2-\lambda)((4-\lambda)(-1-\lambda)+6) \quad(\text { pro tip } \ldots)
$$

$$
=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)=-(\lambda-1)(\lambda-2)^{2} .
$$

Characteristic Polynomial: $p(\lambda)=-(\lambda-1)(\lambda-2)^{2}=0$.

Eigenvalues: $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=2$. Now what?

For each λ_{k}, solve $\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right) \vec{v}=\overrightarrow{0}$.

With $\lambda_{1}=1: \quad\left[\begin{array}{ccc}4-1 & -3 & 1 \\ 2 & -1-1 & 1 \\ 0 & 0 & 2-1\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
3 & -3 & 1 \\
2 & -2 & 1 \\
0 & 0 & 1
\end{array}\right] \stackrel{R_{1}+(-1) R_{2}}{\Rightarrow}\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & -2 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \stackrel{R_{2}+(-1) R_{1}}{\Rightarrow}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad z=0, y=b, x=y=b . \\
& \\
& \Rightarrow\left[\begin{array}{l}
b \\
b \\
0
\end{array}\right]=b\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] . \quad \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \text { when } b=1 .
\end{aligned}
$$

The eigenspace of $\lambda_{1}=1$ is 1 -dimensional.
Basis for λ_{1} eigenspace: $\left\{\vec{v}_{1}\right\}$.

With $\lambda_{2,3}=2: \quad \mathbf{A}-\mathbf{2} \mathbf{I}=\left[\begin{array}{ccc}4-2 & -3 & 1 \\ 2 & -1-2 & 1 \\ 0 & 0 & 2-2\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & -3 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
2 & -3 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
1 & -\frac{3}{2} & \frac{1}{2}
\end{array}\right], \quad z=c, \quad y=b, \quad x=\frac{3}{2} y-\frac{1}{2} z=\frac{3}{2} b-\frac{1}{2} c .
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{c}
\frac{3}{2} b-\frac{1}{2} c \\
b \\
c
\end{array}\right]=b\left[\begin{array}{c}
\frac{3}{2} \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1
\end{array}\right] .
$$

$\vec{v}_{2}=\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ and $\vec{v}_{3}=\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$, when $b, c=2$.

The eigenspace of $\lambda_{2,3}=2$ is two-dimensional.
Basis for $\lambda_{2,3}$ eigenspace: $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$.

Problem: \#30 Find the complex-conjugate eigenvalues and corresponding eigenvectors of the matrix:

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -12 \\
12 & 0
\end{array}\right]
$$

Characteristic polynomial: $p(\lambda)=|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}0-\lambda & -12 \\ 12 & 0-\lambda\end{array}\right|$

$$
=\lambda^{2}+144=0 .
$$

Eigenvalues: $\lambda_{1}=-12 i, \lambda_{2}=+12 i$.

For each λ_{k}, solve $\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right) \vec{v}=\overrightarrow{0}$.

With $\lambda_{1}=-12 i:\left[\begin{array}{cc}0-\lambda_{1} & -12 \\ 12 & 0-\lambda_{1}\end{array}\right]=\left[\begin{array}{cc}12 i & -12 \\ 12 & 12 i\end{array}\right]$

$$
\begin{aligned}
& \stackrel{\frac{1}{12} R_{1,2}}{\Rightarrow}\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{2}}{\Rightarrow}\left[\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right] \Rightarrow y=b \text { and } x=-i b .
\end{aligned}
$$

So, $\vec{v}_{1}=\left[\begin{array}{c}-i b \\ b\end{array}\right]=b\left[\begin{array}{c}-i \\ 1\end{array}\right]=\left[\begin{array}{c}-i \\ 1\end{array}\right]$, when $b=1$.

Similarly...
With $\left.\lambda_{2}=+12 i: \quad \begin{array}{c}-12 i a-12 b=0 \\ 12 a-12 i b=0\end{array}\right\} \quad \vec{v}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
(leave it to you as an exercise)
Note that \vec{v}_{1} and \vec{v}_{2} are conjugate to each other.

Problem: \#35 \quad a) Suppose that \mathbf{A} is a square matrix.

Use the characteristic equation to show that A and A^{T} have the same eigenvalues.

Note first that $(\mathbf{A}-\lambda \mathbf{I})^{T}=\left(\mathbf{A}^{T}-\lambda \mathbf{I}^{T}\right)=\left(\mathbf{A}^{T}-\lambda \mathbf{I}\right)$, because $\mathbf{I}^{T}=\mathbf{I}$.

Since we learned earlier that the determinant of a square matrix equals the determinant of its transpose, it follows that $|\mathbf{A}-\lambda \mathbf{I}|=\left|\mathbf{A}^{T}-\lambda \mathbf{I}\right|$.

This means the matrices \mathbf{A} and \mathbf{A}^{T} have the same characteristic polynomial. Therefore they have the same eigenvalues.
b) Give an example of a $\mathbf{2} \times 2$ matrix A such that A and A^{T} do not have the same eigenvectors.

Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ with characteristic equation $(\lambda-1)^{2}=0$ and the single eigenvalue $\lambda=1$.

Then $\mathbf{A}-\mathbf{I}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and it follows that the only associated eigenvector is a multiple of $\left[\begin{array}{l}0 \\ 1\end{array}\right]$

The transpose $\mathbf{A}^{T}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ has the same characteristic equation and eigenvalue,
but $\mathbf{A}^{T}-\mathbf{I}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, so its only eigenvector is a multiple of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

Thus \mathbf{A} and \mathbf{A}^{T} have the same eigenvalue but different eigenvectors.

