MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

6.1: Eigenvalues

For an $n \times n$ matrix **A**, if we have: $\mathbf{A}\vec{v} = \lambda\vec{v}$, then the scalar λ is an **eigenvalue**, and \vec{v} is an **eigenvector**,

where \vec{v} is a nonzero vector, $\lambda \in \mathbb{C}$, and **I** is the identity matrix (or equavalently $(\mathbf{A} - \lambda \mathbf{I})\vec{v} = \vec{0}$).

vector (red), eigenvector (blue) under ${f A}$

Motivation: Recall how points in the \mathbb{R}^n vector space are characterized as linear combinations of the unit vectors u_x along the axes; $(1,-3,5) = 1(1,0,0) - 3(0,1,0) + 5(0,0,1) = 1u_x - 3u_y + 5u_z$.

Analogously, solutions in the solution space to a system of DEQs $\vec{x}' = \mathbf{A}\vec{x}$ can be characterized as linear combinations of $e^{\lambda t}\vec{v}_{\lambda}$, where $\lambda, \vec{v}_{\lambda}$ are the eigenvalues, eigenvectors of **A** (we will learn about this in chapter 7).

Applications: Modeling migration patterns, predator-prey relationships, fluid dynamic, and many more.

Calculation

Given A, how do we find its eigenvalues and eigenvectors?

We want λ , \vec{v} such that: $(\mathbf{A} - \lambda \mathbf{I})\vec{v} = \vec{0}$.

Observe that this is a homogeneous system of *n* equations, where our *n* unknowns are the components of \vec{v} .

Recall that such a system has a nontrivial solution $(\vec{v} \neq 0)$ when $|\mathbf{A} - \lambda \mathbf{I}| = 0$.

So by imposing this restriction, we can identify the various λ .

Characteristic Equation: $|\mathbf{A} - \lambda \mathbf{I}| =$

$$= \left| \left[\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{array} \right] - \left[\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{array} \right] \right| = \left| \begin{array}{ccc} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{(n-1)n} \\ a_{n1} & \dots & a_{n(n-1)} & a_{nn} - \lambda \end{array} \right| = 0.$$

Finding eigenvalues and eigenvectors of A:

- ♦ Solve $|\mathbf{A} \lambda \mathbf{I}| = c_1 \lambda^n + c_2 \lambda^{n-1} \dots + c_0 = 0$, for all λ_k (should be *n* of them, including multiplicity) Example: Prob. 21 below
- Then, for each λ_k , solve $(\mathbf{A} \lambda_k \mathbf{I})\vec{v} = \vec{0}$ to find the eigenvector(s) \vec{v} for λ_k .

$$(\mathbf{A} - \lambda_k \mathbf{I}) \overrightarrow{v} = \begin{bmatrix} a_{11} - \lambda_k & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} - \lambda_k \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = \overrightarrow{0}.$$

Example: Prob. 21 below

If the components of A are real, then any complex eigenvalues will occur in conjugate pairs (i.e., $\lambda_{\pm} = a \pm bi$). Example: Prob. 30 below

Eigenspaces:

Each eigenvalue λ_k associated with **A** will produce a set of (one or more) linearly independent eigenvectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$.

For each λ_k , the associated eigenvectors form a basis for a subspace, $span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\} = \mathbb{R}^m \subseteq \mathbb{R}^n$.

This subspace is called an eigenspace, and is FULL of eigenvectors which are linear combinations of the discovered basis.

The eigenspace of each λ_k serves as the solution space to $(\mathbf{A} - \lambda_k I)\vec{v} = \vec{0}$.

Video Tutorial (visually rich and intuitive): https://youtu.be/PFDu9oVAE-g

Exercises 📈

Problem: # 21 Find the (real) eigenvalues, the associated eigenvectors, and a basis for each eigenspace for the matrix: $\mathbf{A} = \begin{bmatrix} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 4 - \lambda & -3 & 1 \\ 2 & -1 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix}$$

 $= (2 - \lambda)((4 - \lambda)(-1 - \lambda) + 6)$ (pro tip....)

$$= (2-\lambda)(\lambda^2-3\lambda+2) \qquad = \qquad -(\lambda-1)(\lambda-2)^2.$$

Characteristic Polynomial: $p(\lambda) = -(\lambda - 1)(\lambda - 2)^2 = 0.$

Eigenvalues: $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = 2$. Now what?

For each λ_k , solve $(\mathbf{A} - \lambda_k \mathbf{I}) \overrightarrow{v} = \overrightarrow{0}$.

With $\lambda_1 = 1$: $\begin{bmatrix} 4-1 & -3 & 1 \\ 2 & -1-1 & 1 \\ 0 & 0 & 2-1 \end{bmatrix}$ $= \begin{bmatrix} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + (-1)R_2} \begin{bmatrix} 1 & -1 & 0 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ $R_2 + (-1)R_1 \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $R_2 + (-1)R_1 \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad z = 0, \ y = b, \ x = y = b.$ $\Rightarrow \begin{bmatrix} b \\ b \\ 0 \end{bmatrix} = b \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \text{ when } b = 1.$

The eigenspace of $\lambda_1 = 1$ is 1-dimensional. Basis for λ_1 eigenspace: $\{\vec{v}_1\}$.

With
$$\lambda_{2,3} = 2$$
: $\mathbf{A} - 2\mathbf{I} = \begin{bmatrix} 4-2 & -3 & 1 \\ 2 & -1-2 & 1 \\ 0 & 0 & 2-2 \end{bmatrix}$
$$= \begin{bmatrix} 2 & -3 & 1 \\ 2 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -3 & 1 \\ 2 & -3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -3 & 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}, \quad z = c, \quad y = b, \quad x = \frac{3}{2}y - \frac{1}{2}z = \frac{3}{2}b - \frac{1}{2}c.$$

$$\Rightarrow \begin{bmatrix} \frac{3}{2}b - \frac{1}{2}c \\ b \\ c \end{bmatrix} = b \begin{bmatrix} \frac{3}{2} \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$$
$$\vec{v}_2 = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix} \text{ and } \vec{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \text{ when } b, c = 2.$$

The eigenspace of $\lambda_{2,3} = 2$ is two-dimensional. Basis for $\lambda_{2,3}$ eigenspace: $\{\vec{v}_2, \vec{v}_3\}$.

Problem: **#30** Find the complex-conjugate eigenvalues and corresponding eigenvectors of the matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & -12 \\ 12 & 0 \end{bmatrix}.$$

Characteristic polynomial: $p(\lambda) = |\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 0 - \lambda & -12 \\ 12 & 0 - \lambda \end{vmatrix}$

 $=\lambda^2+144=0.$

Eigenvalues: $\lambda_1 = -12i$, $\lambda_2 = +12i$.

For each λ_k , solve $(\mathbf{A} - \lambda_k \mathbf{I}) \overrightarrow{v} = \overrightarrow{0}$.

With
$$\lambda_1 = -12i$$
: $\begin{bmatrix} 0 - \lambda_1 & -12 \\ 12 & 0 - \lambda_1 \end{bmatrix} = \begin{bmatrix} 12i & -12 \\ 12 & 12i \end{bmatrix}$
$$\stackrel{\frac{1}{12}R_{1,2}}{\Rightarrow} \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \stackrel{R_1 \leftrightarrow R_2}{\Rightarrow} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix} \Rightarrow y = b \text{ and } x = -ib.$$
So, $\vec{v}_1 = \begin{bmatrix} -ib \\ b \end{bmatrix} = b \begin{bmatrix} -i \\ 1 \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$, when $b = 1$.

Similarly...

With
$$\lambda_2 = +12i$$
: $\begin{pmatrix} -12ia - 12b = 0 \\ 12a - 12ib = 0 \end{pmatrix}$ $\vec{v}_2 = \begin{vmatrix} i \\ 1 \end{vmatrix}$.

(leave it to you as an exercise)

Note that \vec{v}_1 and \vec{v}_2 are conjugate to each other.

Problem: #35 a) Suppose that A is a square matrix.

Use the characteristic equation to show that A and A^T have the same eigenvalues.

Note first that $(\mathbf{A} - \lambda \mathbf{I})^T = (\mathbf{A}^T - \lambda \mathbf{I}^T) = (\mathbf{A}^T - \lambda \mathbf{I})$, because $\mathbf{I}^T = \mathbf{I}$.

Since we learned earlier that the determinant of a square matrix equals the determinant of its transpose, it follows that $|\mathbf{A} - \lambda \mathbf{I}| = |\mathbf{A}^T - \lambda \mathbf{I}|$.

This means the matrices A and A^{T} have the same characteristic polynomial. Therefore they have the same eigenvalues.

b) Give an example of a 2×2 matrix A such that A and A^T do not have the same eigenvectors.

Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ with characteristic equation $(\lambda - 1)^2 = 0$ and the single eigenvalue $\lambda = 1$. Then $\mathbf{A} - \mathbf{I} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and it follows that the only associated eigenvector is a multiple of $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. The transpose $\mathbf{A}^T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has the same characteristic equation and eigenvalue, but $\mathbf{A}^T - \mathbf{I} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, so its only eigenvector is a multiple of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Thus \mathbf{A} and \mathbf{A}^T have the same eigenvalue but different eigenvectors.