6.3 - Applications Involving Powers of Matrices

If $\mathbf{A}=\mathbf{P D P}^{-1}$, then $\mathbf{A}^{2}=\left(\mathbf{P D P}^{-1}\right)\left(\mathbf{P D P}^{-1}\right)=\mathbf{P D}\left(\mathbf{P}^{-1} \mathbf{P}\right) \mathbf{D P}^{-1}=\mathbf{P D}^{2} \mathbf{P}^{-1}$.
Continuing in this fashion, we find: $\mathbf{A}^{k}=\mathbf{P} \mathbf{D}^{k} \mathbf{P}^{-1}$ with $\mathbf{D}^{k}=\left[\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right]$.

Transition Matrices:

A matrix A which "transitions" the state of a system (notated as a vector \vec{x}_{k})
from one moment \vec{x}_{k}, to the next \vec{x}_{k+1}. So, $\vec{x}_{k+1}=\mathbf{A} \vec{x}_{k}$ where \vec{x}_{0} is the initial vector.
Therefore, $\vec{x}_{k}=\mathbf{A}^{k} \vec{x}_{0}$. Because, $\vec{x}_{k}=\mathbf{A} \vec{x}_{k-1}=\mathbf{A}^{2} \vec{x}_{k-2}=\ldots=\mathbf{A}^{k} \vec{x}_{0}$.
Predator-Prey Models: $\quad F:=$ Foxes, $\quad R:=$ Rabbits.
$F_{k+1}=a F_{k}+b R_{k}$
$R_{k+1}=-r F_{k}+c R_{k}$ where $a, b, c, r \in \mathbb{R}$.
Also r is rate at which the rabbits are eaten by foxes.
Given this scenario, set up vector and matrix:

$$
\vec{x}_{k}=\left[\begin{array}{c}
F_{k} \\
R_{k}
\end{array}\right] \text { and } \mathbf{A}=\left[\begin{array}{cc}
a & b \\
-r & c
\end{array}\right]
$$

As $k \rightarrow \infty \ldots$
F_{k} and R_{k} may approach constant nonzero values,

- F_{k} and R_{k} may both approach zero,
- F_{k} and R_{k} may both increase without bound.

Cayley-Hamilton Theorem:

"Every square matrix satisfies its own characteristic equation."
If \mathbf{A} has the characteristic polynomial: $p(\lambda)=(-1)^{3} \lambda^{3}+c_{2} \lambda^{2}+c_{1} \lambda+c_{0}$, then \ldots

$$
p(\mathbf{A})=-\mathbf{A}^{3}+c_{2} \mathbf{A}^{2}+c_{1} \mathbf{A}+c_{0} \mathbf{I}=\mathbf{0} .
$$

Problem: \#28 A city/suburban population transition matrix \mathbf{A} is given.
Find the resulting long-term distribution of a constant total population between the city and its suburbs.
$C_{k+1}=0.8 C_{k}+0.1 S_{k}$
$S_{k+1}=0.2 C_{k}+0.9 S_{k}$

$$
\mathbf{A}=\left[\begin{array}{ll}
0.8 & 0.1 \\
0.2 & 0.9
\end{array}\right]
$$

Characteristic polynomial: $\quad p(\lambda)=\lambda^{2}-\frac{17}{10} \lambda+\frac{7}{10}=\frac{1}{10}(\lambda-1)(10 \lambda-7)$.

Eigenvalues: $\lambda_{1}=1, \lambda_{2}=\frac{7}{10}$

With $\lambda_{1}=1$:

$$
\left.\begin{array}{c}
-\frac{1}{5} a+\frac{1}{10} b=0 \\
\frac{1}{5} a-\frac{1}{10} b=0
\end{array}\right\} \quad \vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

With $\lambda_{2}=\frac{7}{10}:$

$$
\left.\begin{array}{c}
-\frac{1}{10} a+\frac{1}{10} b=0 \\
\frac{1}{5} a+\frac{1}{5} b=0
\end{array}\right\} \quad \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$\mathbf{P}=\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{7}{10}\end{array}\right], \quad \mathbf{P}^{-1}=\frac{1}{3}\left[\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right]$

Recall:

Transition Matrices:

$\vec{x}_{k+1}=\mathbf{A} \vec{x}_{k}$ where \vec{x}_{0} is the initial vector.
Therefore, $\vec{x}_{k}=\mathbf{A}^{k} \vec{x}_{0}$.

$$
\begin{aligned}
\vec{x}_{k}= & \mathbf{A}^{k} \cdot \vec{x}_{0}=\frac{1}{3}\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{7}{10}
\end{array}\right]^{k}\left[\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right] \vec{x}_{0} \\
& \Rightarrow \vec{x}_{\infty}=\frac{1}{3}\left[\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right] \vec{x}_{0} \\
& =\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{c}
C_{0} \\
S_{0}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
C_{0}+S_{0} \\
2 C_{0}+2 S_{0}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
P_{0} \\
2 P_{0}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} P_{0} \\
\frac{2}{3} P_{0}
\end{array}\right], \text { as } k \rightarrow \infty \text { where } P_{0} \text { is the total initial population. }
\end{aligned}
$$

Thus the long-term distribution of population is $\frac{1}{3}$ city, $\frac{2}{3}$ suburban.

Problem: \#32 This problem deals with a fox-rabbit population.
Initially, there are F_{0} foxes and R_{0} rabbits; after k months, there are F_{k} foxes and R_{k} rabbits.
It involves the transition matrix $\mathbf{A}=\left[\begin{array}{cc}0.6 & 0.5 \\ -r & 1.2\end{array}\right]$ where the kill rate r is 0.175 .
Show that in the long term, the populations of foxes and rabbits both die out.

Characteristic polynomial: $p(\lambda)=\lambda^{2}-\frac{9}{5} \lambda+\frac{323}{400}=\frac{1}{400}(20 \lambda-19)(20 \lambda-17)$.

Eigenvalues: $\lambda_{1}=\frac{19}{20}, \lambda_{2}=\frac{17}{20}$.

With $\left.\lambda_{1}=\frac{19}{20}: \quad \begin{array}{l}-\frac{7}{20} a+\frac{1}{2} b=0 \\ -\frac{7}{40} a+\frac{1}{4} b=0\end{array}\right\} \quad \vec{v}_{1}=\left[\begin{array}{c}10 \\ 7\end{array}\right]$.

With $\lambda_{2}=\frac{17}{20}:$

$$
\left.\begin{array}{c}
-\frac{1}{4} a+\frac{1}{2} b=0 \\
-\frac{7}{40} a+\frac{7}{20} b=0
\end{array}\right\} \quad \vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

$$
\mathbf{P}=\left[\begin{array}{cc}
10 & 2 \\
7 & 1
\end{array}\right], \quad \mathbf{D}=\left[\begin{array}{cc}
\frac{19}{20} & 0 \\
0 & \frac{17}{20}
\end{array}\right], \quad \mathbf{P}^{-1}=\frac{1}{4}\left[\begin{array}{cc}
-1 & 2 \\
7 & -10
\end{array}\right]
$$

$$
\vec{x}_{k}=\mathbf{A}^{k} \vec{x}_{0}=\left[\begin{array}{cc}
10 & 2 \\
7 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{19}{20} & 0 \\
0 & \frac{17}{20}
\end{array}\right]^{k} \cdot \frac{1}{4}\left[\begin{array}{cc}
-1 & 2 \\
7 & -10
\end{array}\right] \vec{x}_{0}
$$

$$
\rightarrow \vec{x}_{\infty}=\frac{1}{4}\left[\begin{array}{ll}
10 & 2 \\
7 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
7 & -10
\end{array}\right] \vec{x}_{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
F_{0} \\
R_{0}
\end{array}\right]
$$

$$
=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, as } k \rightarrow \infty . \text { Thus the Fox and Rabbit population both die out. }
$$

Problem: \#37 \quad Suppose that $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
Show that $\mathbf{A}^{4 n}=\mathbf{I}, \quad \mathbf{A}^{4 n+2}=-\mathbf{I}, \quad$ and $\mathbf{A}^{4 n+3}=-\mathbf{A}, \quad$ for every positive integer n.

$$
\mathbf{A}^{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=-\mathbf{I} .
$$

So $\mathbf{A}^{3}=\mathbf{A}^{2} \mathbf{A}=-\mathbf{I} \mathbf{A}=-\mathbf{A}$,

$$
\mathbf{A}^{4}=\mathbf{A}^{3} \mathbf{A}=(-\mathbf{A}) \mathbf{A}=-\mathbf{A}^{2}=-(-\mathbf{I})=\mathbf{I}, \text { and so forth. }
$$

Therefore, $\mathbf{A}^{4 n}=\mathbf{I}, \quad \mathbf{A}^{4 n+2}=-\mathbf{I}$, and $\mathbf{A}^{4 n+3}=-\mathbf{A}$, for every positive integer n.

