7.3: The Eigenvalue Method for Linear Systems

Finding the general solution to a homogeneous linear first-order system $\vec{z}^{\prime}=\mathbf{A} \vec{z}$ with real coefficients, or equivalently:

$$
\begin{gathered}
x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}, \\
x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}, \\
\vdots \\
x_{n}^{\prime}=a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n} .
\end{gathered}
$$

Eigenvalue Solutions of $\vec{z}^{\prime}=\mathbf{A} \vec{z}$ Theorem: If λ is an eigenvalue of the constant coefficient matrix \mathbf{A}, and if \vec{v} is an eigenvector associated with λ, then the vector function $\vec{z}(t)=\vec{v} e^{\lambda t}$, is a nontrivial solution to the system. (the trivial solution is $\vec{z}(t)=\overrightarrow{0}$)

Proof: By theorem from previous section, it suffices to find n linearly independent solution vectors $\vec{z}_{1}, \ldots, \vec{z}_{n}$, and place them in a linear combination. But how to find these vectors?

Recall the educated guess when solving individual homogeneous linear DEQs: $x(t)=e^{r t}$. But this isn't a vector.

So how about $\vec{z}(t)=\vec{v} e^{\lambda t}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] e^{\lambda t}=\left[\begin{array}{c}v_{1} e^{\lambda t} \\ v_{2} e^{\lambda t} \\ \vdots \\ v_{n} e^{\lambda t}\end{array}\right]$, for some constants λ, v_{i}.

Note that $\vec{z}^{\prime}=\lambda \vec{v} e^{\lambda t}$.

To be a solution, we need $\vec{z}^{\prime}=\mathbf{A} \vec{z}$, or substituting from above, $\lambda \vec{v} e^{\lambda t}=\mathbf{A} \vec{v} e^{\lambda t}$, and canceling $e^{\lambda t}$ from both sides gives us $\lambda \vec{v}=\mathbf{A} \vec{v}$.

You may recall that when $\vec{v} \neq \overrightarrow{0}$, then the above equation is the requirement for having an eigenvalue, eigenvector pair (λ, \vec{v}) of \mathbf{A}.

Steps to a Solution for $\vec{z}^{\prime}=\mathbf{A} \vec{z}$.

- Solve the characteristic equation $|\mathbf{A}-\lambda \mathbf{I}|=0$ for the eigenvalues λ_{i} of \mathbf{A}.
- Attempt to find n linearly independent eigenvectors \vec{v}_{i} from the λ_{i}, each pair $\left\{\lambda_{i}, \vec{v}_{i}\right\}$ gives you a linearly independent solution $\vec{z}_{i}(t)=\vec{v}_{i} e^{\lambda_{i} t}$.

If n such vectors are found, then: $\vec{z}(t)=c_{1} \vec{z}_{1}(t)+c_{2} \vec{z}_{2}(t)+\ldots+c_{n} \vec{z}_{n}(t)$.

In general, to verify independence of solutions, check if the Wronskian $\left|\vec{v}_{1} e^{\lambda_{1} t} \ldots \vec{v}_{n} e^{\lambda_{n} t}\right|$ is nonzero.

Steps for Complex Eigenvalues $\lambda \in \mathbb{C}$ (which come in conjugate pairs):
\downarrow Form the complex solution $\vec{z}(t)=\vec{v}_{i} e^{\lambda t}$ associated either λ or $\bar{\lambda}$ (doesn't matter which).
This involves a complex λ and complex \vec{v}_{i}.

- Notationally manipulate $\vec{z}(t)$ into the form $\vec{f}(t)+i \vec{g}(t)$ to identify the real and imaginary parts (see examples of this below)
- Once you have found these two solutions $(\vec{f}(t)$ and $\vec{g}(t))$, you are done.

The solutions associated with the eigenvalue's conjugate $\bar{\lambda}$ are identical.

As an exercise, verify that the solutions obtained from each conjugate $\lambda, \bar{\lambda}$ are identical.

See the examples below to get a better feel for what this section is saying.

Exercises

Problem: \#12 Apply the eigenvalue method of this section to find a general solution of the given system:

$$
x_{1}^{\prime}=x_{1}-5 x_{2}, \quad x_{2}^{\prime}=x_{1}+3 x_{2} .
$$

$\mathbf{A}=\left[\begin{array}{cc}1 & -5 \\ 1 & 3\end{array}\right]$

Characteristic Equation: $|\mathbf{A}-\lambda I|=\left|\begin{array}{cc}1-\lambda & -5 \\ 1 & 3-\lambda\end{array}\right|=(1-\lambda)(3-\lambda)+5=\lambda^{2}-4 \lambda+8$
$\lambda=\frac{4 \pm \sqrt{16-32}}{2}$
Eigenvalues: $\lambda=2 \pm 2 i$.

Eigenvector Equation (for $2+2 i$):

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1-(2+2 i) & -5 \\
1 & 3-(2+2 i)
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
-1-2 i & -5 \\
1 & 1-2 i
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & 1-2 i \\
-1-2 i & -5
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{cc}
1 & 1-2 i \\
0 & 0
\end{array}\right], \quad y=b, x=-b(1-2 i)
\end{aligned}
$$

Eigenvector: $\vec{v}=\left[\begin{array}{ll}-b(1-2 i) & b\end{array}\right]^{T}=\left[\begin{array}{ll}1-2 i & -1\end{array}\right]^{T}$, when $b=-1$.

So we have: $\vec{v} e^{(2+2 i) t} \quad$ (from above, "Notationally manipulate into the form $f(t)+i g(t)$ ")

$$
\begin{aligned}
& =e^{2 t} e^{2 i t}\left[\begin{array}{c}
1-2 i \\
-1
\end{array}\right] \\
& =e^{2 t}(\cos 2 t+i \sin 2 t)\left[\begin{array}{c}
1-2 i \\
-1
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
(\cos 2 t+i \sin 2 t)(1-2 i) \\
-\cos 2 t-i \sin 2 t
\end{array}\right]
\end{aligned}
$$

Expanding the parentheses:

$$
\begin{aligned}
& =e^{2 t}\left[\begin{array}{c}
(\cos 2 t+i \sin 2 t)-2 i(\cos 2 t+i \sin 2 t) \\
-\cos 2 t-i \sin 2 t
\end{array}\right] \\
& =e^{2 t}\left[\begin{array}{c}
\cos 2 t+i \sin 2 t-2 i \cos 2 t+2 \sin 2 t \\
-\cos 2 t-i \sin 2 t
\end{array}\right]
\end{aligned}
$$

Collecting the imaginary parts:

$$
=e^{2 t}\left[\begin{array}{c}
\cos 2 t+2 \sin 2 t+i(\sin 2 t-2 \cos 2 t) \\
-\cos 2 t-i \sin 2 t
\end{array}\right]
$$

Separating the imaginary part from the real part $(f(t)+i g(t))$:

$$
=e^{2 t}\left[\begin{array}{c}
\cos 2 t+2 \sin 2 t \\
-\cos 2 t
\end{array}\right]+i e^{2 t}\left[\begin{array}{c}
\sin 2 t-2 \cos 2 t \\
-\sin 2 t
\end{array}\right]
$$

We only need real linearly independent solutions, so:

$$
\vec{z}(t)=c_{1} e^{2 t}\left[\begin{array}{c}
\cos 2 t+2 \sin 2 t \\
-\cos 2 t
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{c}
\sin 2 t-2 \cos 2 t \\
-\sin 2 t
\end{array}\right]
$$

Or, with alternate notation:

$$
\begin{aligned}
x_{1}(t) & =e^{2 t}\left[c_{1}(\cos 2 t+2 \sin 2 t)+c_{2}(\sin 2 t-2 \cos 2 t)\right] \\
& =e^{2 t}\left[\left(c_{1}-2 c_{2}\right) \cos 2 t+\left(2 c_{1}+c_{2}\right) \sin 2 t\right] \\
x_{2}(t) & =e^{2 t}\left(-c_{1} \cos 2 t-c_{2} \sin 2 t\right)
\end{aligned}
$$

The image below shows a direction field for this DEQ and some typical solution curves:

Problem: \#25 Apply the eigenvalue method to find a general solution of the system.

$$
x_{1}^{\prime}=5 x_{1}+5 x_{2}+2 x_{3}, \quad x_{2}^{\prime}=-6 x_{1}-6 x_{2}-5 x_{3}, \quad x_{3}^{\prime}=6 x_{1}+6 x_{2}+5 x_{3}
$$

$\mathbf{A}=\left[\begin{array}{ccc}5 & 5 & 2 \\ -6 & -6 & -5 \\ 6 & 6 & 5\end{array}\right]$
Characteristic equation: $-\lambda^{3}+4 \lambda^{2}-13 \lambda=0$

Eigenvalues: $\lambda=0$ and $2 \pm 3 i$

With $\lambda=0$ the eigenvector equation

$$
\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right] \vec{v}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { gives eigenvector } \vec{v}_{1}=\left[\begin{array}{ccc}
1 & -1 & 0
\end{array}\right]^{T}
$$

So: $\vec{z}_{1}(t)=\vec{v}_{1} e^{0 \cdot t}=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{T}$.

With $\lambda=2+3 i$ we solve the eigenvector equation

$$
\left[\begin{array}{ccc}
3-3 i & 5 & 2 \\
-6 & -8-3 i & -5 \\
6 & 6 & 3-3 i
\end{array}\right] \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

To find the complex valued eigenvector $\vec{v}_{2}=\left[\begin{array}{lll}1+i & -2 & 2\end{array}\right]^{T}$.

The corresponding complex-valued solution is
$\vec{v}_{2} e^{(2+3 i) t}=e^{2 t} e^{3 i t}\left[\begin{array}{c}1+i \\ -2 \\ 2\end{array}\right]=e^{2 t}(\cos 3 t+i \sin 3 t)\left[\begin{array}{c}1+i \\ -2 \\ 2\end{array}\right]$

$$
=e^{2 t}\left[\begin{array}{c}
(\cos 3 t+i \sin 3 t)+i(\cos 3 t+i \sin 3 t) \\
-2 \cos 3 t-2 i \sin 3 t \\
2 \cos 3 t+2 i \sin 3 t
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
\cos 3 t-\sin 3 t+i \cos 3 t-i \sin 3 t \\
-2 \cos 3 t-2 i \sin 3 t \\
2 \cos 3 t+2 i \sin 3 t
\end{array}\right] .
$$

We are only interested in the real values, so:

$$
\vec{z}_{2}(t)+\vec{z}_{3}(t)=c_{2} e^{2 t}\left[\begin{array}{c}
\cos 3 t-\sin 3 t \\
-2 \cos 3 t \\
2 \cos 3 t
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{c}
\cos 3 t-\sin 3 t \\
-2 \sin 3 t \\
2 \sin 3 t
\end{array}\right]
$$

Finally, we add the three solutions, with arbitrary constants.
So: $\vec{z}(t)=c_{1} \vec{z}_{1}(t)+c_{2} \vec{z}_{2}(t)+c_{3} \vec{z}_{3}(t)$

$$
=c_{1}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{c}
\cos 3 t-\sin 3 t \\
-2 \cos 3 t \\
2 \cos 3 t
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{c}
\cos 3 t-\sin 3 t \\
-2 \sin 3 t \\
2 \sin 3 t
\end{array}\right]
$$

The scalar components of the above general solution are:

$$
\begin{aligned}
& x_{1}(t)=c_{1}+e^{2 t}\left[\left(c_{2}+c_{3}\right) \cos 3 t-\left(c_{2}+c_{3}\right) \sin 3 t\right], \\
& x_{2}(t)=-c_{1}+2 e^{2 t}\left(-c_{2} \cos 3 t-c_{3} \sin 3 t\right), \\
& x_{3}(t)=2 e^{2 t}\left(c_{2} \cos 3 t+c_{3} \sin 3 t\right)
\end{aligned}
$$

Finding the complex eigenvector from the previous problem:

$$
\mathbf{A}=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right] \quad \text { Eigenvalues: } \lambda=0 \text { and } 2 \pm 3 i
$$

With $\lambda=2+3 i$ we solve the eigenvector equation...

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
5-(2+3 i) & 5 & 2 \\
-6 & -6-(2+3 i) & -5 \\
6 & 6 & 5-(2+3 i)
\end{array}\right]=\left[\begin{array}{ccc}
3-3 i & 5 & 2 \\
-6 & -8-3 i & -5 \\
6 & 6 & 3-3 i
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{ccc}
6 & 6 & 3-3 i \\
-6 & -8-3 i & -5 \\
3-3 i & 5 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 1 & \frac{1}{2}-\frac{1}{2} i \\
0 & -2-3 i & -2-3 i \\
3-3 i & 5 & 2
\end{array}\right]
\end{aligned}
$$

Note: $-(3-3 i)\left(\frac{1}{2}-\frac{1}{2} i\right)=-\left(\frac{3}{2}-\frac{3}{2}-\frac{3}{2} i-\frac{3}{2} i\right)=3 i$. So:

$$
\Rightarrow\left[\begin{array}{ccc}
1 & 1 & \frac{1}{2}-\frac{1}{2} i \\
0 & -2-3 i & -2-3 i \\
0 & 2+3 i & 2+3 i
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{ccc}
1 & 1 & \frac{1}{2}-\frac{1}{2} i \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2}-\frac{1}{2} i \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
z=c, \quad y=-c, \quad x=\frac{c}{2}+\frac{c}{2} i
$$

$$
\left[\begin{array}{c}
\frac{c}{2}+\frac{c}{2} i \\
-c \\
c
\end{array}\right]=\left[\begin{array}{c}
1+1 i \\
-2 \\
2
\end{array}\right] \text { where } c=2
$$

Complex valued eigenvector: $\vec{v}_{2}=\left[\begin{array}{lll}1+i & -2 & 2\end{array}\right]^{T}$.

Problem: \#34

This problem deals with the open three tank system. Freshwater flows into tank-1.
Mixed brine (salt water) flows from tank-1 into tank-2, from tank-2 into tank-3, and out of tank-3.
All have the flow rate $r=60$ gallons per minute. Initial $(t=0)$ amounts of salt are:

$$
x_{1}(0)=40 \mathrm{lb}, \quad x_{2}(0)=0, \text { and } x_{3}(0)=0 \text { in the three tanks. }
$$

Initial volumes: $V_{1}=20, \quad V_{2}=12, \quad V_{3}=60$.

a.) First, solve for the amounts of salt in the three tanks at time t.

Observe that: $x_{i}^{\prime}=\left[I N_{i}\right.$ Salt $]-\left[O U T_{i}\right.$ Salt $]$

$$
=\left[\text { In-Concentration }_{i} \times \text { In-Flow }_{i}\right]-\left[\text { Out-Concentration }_{i} \times \text { Out-Flow }_{i}\right]
$$

So, $x_{1}^{\prime}=[0 \times 60]-\left[\frac{x_{1}}{20} \times 60\right]=-3 x_{1}$.

Similarly: $x_{2}^{\prime}=3 x_{1}-5 x_{2}$, and $x_{3}^{\prime}=5 x_{2}-x_{3}$.

And, $\vec{z}^{\prime}=\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{c}-3 x_{1} \\ 3 x_{1}-5 x_{2} \\ 5 x_{2}-x_{3}\end{array}\right]$.

$$
=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
3 & -5 & 0 \\
0 & 5 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{A} \vec{z} .
$$

The coefficient matrix $\mathbf{A}=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -5 & 0 \\ 0 & 5 & -1\end{array}\right]$ has as eigenvalues, its diagonal elements:
$\lambda_{1}=-3, \lambda_{2}=-5$, and $\lambda_{3}=-1$ (as with any triangular matrix).

We find that the associated eigenvectors are:

$$
\vec{v}_{1}=\left[\begin{array}{lll}
-4 & -6 & 15
\end{array}\right]^{T}, \quad \vec{v}_{2}=\left[\begin{array}{lll}
0 & -4 & 5
\end{array}\right]^{T}, \text { and } \vec{v}_{3}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}
$$

So: $\vec{z}=\vec{v}_{1} e^{-3 t}+\vec{v}_{2} e^{-5 t}+\vec{v}_{3} e^{-t}$.
Or written as a system:

$$
\begin{aligned}
& x_{1}(t)=-4 c_{1} e^{-3 t} \\
& x_{2}(t)=-6 c_{1} e^{-3 t}-4 c_{2} e^{-5 t} \\
& x_{3}(t)=15 c_{1} e^{-3 t}+5 c_{2} e^{-5 t}+c_{3} e^{-t} . \quad \text { Now What? }
\end{aligned}
$$

The initial conditions $x_{1}(0)=40, x_{2}(0)=0$, and $x_{3}(0)=0$ give us $c_{1}=-10, c_{2}=15, c_{3}=75$. So we have:

$$
\begin{aligned}
& x_{1}(t)=40 e^{-3 t} \\
& x_{2}(t)=60 e^{-3 t}-60 e^{-5 t} \\
& x_{3}(t)=-150 e^{-3 t}+75 e^{-5 t}+75 e^{-t} .
\end{aligned}
$$

b.) Now, determine the maximal amount of salt that tank-3 ever contains.

Remember from calculus that you can find the local maximums and minimums by taking the derivative of the function, and setting it equal to zero. For tank-3:
$x_{3}^{\prime}(t)=450 e^{-3 t}-375 e^{-5 t}-75 e^{-t}=0$

Multiplying by nonzero $\frac{1}{75 e^{-t}}$:
$5 e^{-4 t}-6 e^{-2 t}+1=0 \quad$ Factoring this is the (not so) hard part.
$\left(5 e^{-2 t}-1\right)\left(e^{-2 t}-1\right)=0$

And observe that for the second factor: $e^{-2 t}=1$ when $\ln \left(e^{-2 t}\right)=\ln (1)$,
or equivalently when $-2 t=0$, or $t=0$.

Now looking at the first factor, $e^{-2 t}=\frac{1}{5}$ when $\ln \left(e^{-2 t}\right)=\ln \left(\frac{1}{5}\right)$,
or when $-2 t=-\ln 5$, or $t=\frac{1}{2} \ln 5 \sim 0.8 \mathrm{~min}=48 \mathrm{sec}$.

Since $x_{3}(t)=-150 e^{-3 t}+75 e^{-5 t}+75 e^{-t}$, the maximum amount of salt ever in tank-3 is $x_{3}\left(\frac{1}{2} \ln 5\right) \approx 21.5$ pounds,
c.) Finally, construct a figure showing the graphs of $x_{1}(t), x_{2}(t)$, and $x_{3}(t)$.

The figure below shows the graph of $x_{1}(t), x_{2}(t)$, and $x_{3}(t)$.

