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7.5: Second-Order Systems and Mechanical Applications

Masses (n of them) connected to each other and connected to two walls by n � 1 springs. Assume no
friction, and that each mass mj reacts to the spring(s) attached to it by the familiar formula
F � mjxj

�� � �kx. So, assuming the mass in question mj is reacting to two springs (kj and kj�1), we

have: F � mjxj
�� � �kj�xj � xj�1 � � kj�1�xj�1 � xj �.

Case: n � 3
m1x1

�� � �k1x1 � k2�x2 � x1 �,
m2x2

�� � �k2�x2 � x1 � � k3�x3 � x2 �,
m3x3

�� � �k3�x3 � x2 � � k4x3.

Observe that the initial k1 and the final spring kn�1 only have one mass displacement effecting it (x1

and xn, respectively).

We can put the displacement xj of each mass mj into a displacement vector: x � x1 x2 x3 .

Similarly with the masses, we have a mass matrix:

M �

m1 0 0

0 m2 0

0 0 m3

.

For the spring constants, we have this stiffness matrix:

K �

��k1 � k2 � k2 0

k2 ��k2 � k3 � k3

0 k3 ��k3 � k4 �

.

Using these mathematical objects, we can more elegantly represent the the above system as

Mx
��
� Kx . Since M is invertible, we can calculate M�1 and multiply both sides of the equation (on

the left) to simplify our equation further to our familiar x
��
� Ax , where A � M�1K.

Solution of Second-Order Homogeneous Systems: x
��
� Ax

Consider solutions of the form ert, which we used for single equations. To solve for a system,
however, we will need to make this into a vector. Multiplying by a generic constant vector v , we have
vert. Assuming a solution of this form, and plugging it back into our DEQ, we get:

Avert � vert ��
� r vert �

� r2 vert.

Dividing by ert, we get Av � r2 v . But this is the eigenvector/eigenvalue equation where v is an
eigenvector for A, and � � r2 is the associated eigenvalue.

Typically, when systems of equations like these model mechanical systems, we have eigenvalues
� j � �� j

2 of A which are less than or equal to zero (where each � j is a circular frequency). This



gives us r j � � �� j
2 � �� ji. So, for the eigenpair � j, v j of A we have: v je

i�jt � �cos� jt � i sin� jt�v j.

And from the real and imaginary parts, we get: x j�t� � �a j cos� jt � b j sin� jt�v j.

Theorem: If the n � n matrix A has n distinct nonpositive eigenvalues ��1
2, � �2

2, � , � �n
2, with

eigenvectors v 1, v 2,� , v n, then a general solution of x
��
� Ax is given by

x�t� � �
j�1

n �a j cos� jt � b j sin� jt�v j, where a j and b j are arbitrary constants. In the case where

�� j
2 � 0, the corresponding part x j�t� of the general solution is �� � �a j � b jt�v j �� �.

We wish to convert the solution above to the form x�t� � �
j�1

n
cj cos�� jt � � j �v j, where � j is the

"phase shift" or "phase angle."
So, recall (or learn for the first time) that if we have: Acos�t � B sin�t.

and wish to alter it to be like: Ccos��t � ��, (where C turns out to be the amplitude of the
vibration)

we let A and B be the legs of a right triangle. Then the hypotenus is: C � A2 � B2 .

With angle � (opposite of B), recall we have: cos� � A
C

, sin� � B
C

,

where � �

tan�1 B
A

if A,B � 0 (1st quadrant),

� � tan�1 B
A

if A � 0 (2nd/3rd quadrant),

2� � tan�1 B
A

if A � 0,B � 0 (4th quadrant).

Thus we transform into, Acos�t � B sin�t � C A
C

cos�t � B
C

sin�t

� C�cos�cos�t � sin� sin�t�.
Recall the Trigonometric Identity: cosx cosy � siny sinx � cos�x � y� � cos�y � x�.

So we get: Ccos��t � ��, where C is the amplitude,
� is the circular frequency in rad

sec , and � is the phase angle.

Period of Motion: T � 2�
� sec. Frequency: v � 1

T
� �

2�
in

cycles
sec .

So returning to x�t�, we have x j�t� � cj�cos� j cos5t � sin� j sin5t�v j � cj cos�5t � � j �v j.

Superposition of Wave Frequecies �1 and �2:

Here is a video showing the kinds of movements involved in this section:
https://www.youtube.com/watch?v�cu4TvUwk17g

Forced Oscillations and Resonance:



Let Mx
��
� Kx � F where F � F1�t� F2�t� � Fn�t�

T
are the external forces acting on the masses

m1, m2, � , mn .

So, x
��
� Ax � f , where f �

F1�t�
m1

F2�t�
m2

�
Fn�t�
m2

T
is the external force vector per unit mass.

Often the external forces are periodic,

and we have f �t� � F0 cos�t, where F0 is some constant vector.
We obtain resonance when the external (forced) frequency � is equal

to one of the system’s internal frequencies ��1,�2,� ,�n�.
Undetermined coefficients suggests a trial solution of:

x trial�t� � c cos�t. (why not "� b sin�t" ??)
We solve for particular solution by plugging in this trial solution,

and determining the coefficients: c � c1 c2 � cn .

As with a single equation with forced oscillation, we have a periodic and transient solution
x�t� � x tr�t� � x sp�t� (see section 5.6). Given any damping, the transient solution eventually
disappears leaving only the periodic solution (which is being induced by the external force).

Problem: #7 Suppose a mass-and-spring system have the following stiffness matrix�

K �
��k1 � k2 � k2

k2 ��k2 � k3 �

and has the following values for the mass and spring constants...

m1 � m2 � 1; k1 � 4, k2 � 6, k3 � 4.

Find the two natural frequencies of the system and describe its two natural modes of oscillation.

Mx
��
� Kx or x�� � M�1Kx .

M �
m1 0

0 m2

�
1 0

0 1

� M�1.

So, A �
1 0

0 1

��4 � 6� 6

6 ��6 � 4�
�

�10 6

6 �10
.

�10 � � 6

6 �10 � �
� �10 � ��2 � 36 � �2 � 20� � 64 � �� � 16��� � 4�.

Eigenvalues �1 � �4 and �2 � �16,



with associated eigenvectors v1 � 1 1
T

and v2 � 1 � 1
T
.

Recall: "x�t� � �
j�1

n �a j cos� jt � b j sin� jt�v j" and "Eigenvalues: � � �� i
2"

Therefore: x�t� � �a1 cos 2t � b1 sin2t�
1

1
� �a2 cos 4t � b2 sin4t�

1

�1

x1�t� � a1 cos 2t � b1 sin2t � a2 cos 4t � b2 sin4t,

x2�t� � a1 cos 2t � b1 sin2t � a2 cos 4t � b2 sin4t.

"Describe its two natural modes of oscillation."

The natural frequencies are �1 � 2 and �2 � 4. In the natural mode with frequency 2, the two masses

m1 and m2 move in the same direction with equal amplitudes of oscillation. At frequencies 4, they

move in opposite directions with equal amplitudes.

Problem: #10 The mass-and-spring system of the problem #7 (above) is set in motion from rest [

x1
� �0� � x2

� �0� � 0 ], at its equilibrium position [ x1�0� � x2�0� � 0 ], with external forces

F1�t� � 30cos t and F2�t� � 60cos t acting on the masses m1 and m2, respectively. Find the resulting

motion of the system and describe it as a superposition of oscillations.

Recall: x
��
� Ax � f , m1 � 1, m2 � 1, and A �

�10 6

6 �10
.

Observe that f � M�1F � F � �30cos t, 60cos t � (since M � I�.

So, forming the nonhomogeneous DEQ x
��
� Ax � f , we have:

x1
�� � �10x1 � 6x2 � 30cos t,

x2
�� � 6x1 � 10x2 � 60cos t ���

Recall complementary solution from prob. 7:

xc,1�t� � a1 cos 2t � a2 sin2t � b1 cos 4t � b2 sin4t



xc,2�t� � a1 cos 2t � a2 sin2t � b1 cos 4t � b2 sin4t

Recall from the review that the "trial solution is: x trial�t� � c cos�t, " where we can label the

components c :� d1 d2 .

Taking derivatives of the of the trial solution x1 � d1 cos t, x2 � d2 cos t in order to substitute into

the system ���:

x1
� � �d1 sin t, x2

� � �d2 sin t, x1
�� � �d1 cos t, x2

�� � �d2 cos t.

��d1 cos t� � �10�d1 cos t� � 6�d2 cos t� � 30cos t,

��d2 cos t� � 6�d1 cos t� � 10�d2 cos t� � 60cos t.

Dividing by cos t :

� d1 � �10d1 � 6d2 � 30 ,

� d2 � 6d1 � 10d2 � 60 . (two equations in two unknowns)

9d1 � 6d2 � 30 , 9d2 � 6d1 � 60 ; d1 � 2
3

d2 �
10
3

, d2 � 2
3
� 2

3
d2 �

10
3
� � 20

3

5
9

d2 � 80
9

, d2 � 16, d1 � 2
3
� 16 � 10

3
� 14.

So a general solution is given by:

x1�t� � a1 cos 2t � a2 sin2t � b1 cos 4t � b2 sin4t � 14cos t,

x2�t� � a1 cos 2t � a2 sin2t � b1 cos 4t � b2 sin4t � 16cos t. �� ��

Initial conditions: x1�0� � x2�0� � 0

0 � a1 � b1 � 14, 0 � a1 � b1 � 16;

So: a1 � ��b1 � 14�, 0 � ��b1 � 14� � b1 � 16,

2b1 � 2, b1 � 1; a1 � ��1 � 14� � �15.

Now taking the derivative for the initial condition: x1
� �0� � x2

� �0� � 0:

x1
� � �a1 sin2t � a2 cos 2t � b1 sin4t � b2 cos 4t � 14sin t,

x2
� � �a1 sin2t � a2 cos 2t � b1 sin4t � b2 cos 4t � 16sin t.

0 � a2 � b2, 0 � a2 � b2;

a2 � b2, b2 � ��b2 �; b2 � 0, a2 � 0.



The resulting particular solution from �� �� is:

x1�t� � cos 4t � 15cos 2t � 14cos t,

x2�t� � �cos 4t � 15cos 2t � 16cos t.

"Describe it as a superposition of oscillations at three different frequencies."

We have a superposition of three oscillations, in which the two masses:

� Move in opposite directions with frequency �3 � 4 and equal amplitudes.

� Move in the same direction with frequency �2 � 2 and equal amplitudes;

� Move in the same direction with frequency �1 � 1 and with the amplitude of motion of m2 being

16, and m1 being 14.

Problem: #11a Consider a mass-and-spring system containing two masses m1 � 1 and m2 � 1

whose displacement functions x�t� and y�t� satisfy the differential

equations: x �� � �40x � 8y, y �� � 12x � 60y.

What are the natural frequencies, and in what directions and amplitudes do the masses move?

A �
�40 8

12 �60
,

Determining the eigenvalues:

�40 � � 8

12 �60 � �
	 �40 � ���60 � �� � 96 � �2 � 100� � 2304

� �� � 64��� � 36�. So: �1,2 � �36,�64.

�1 � �36 :
�40 � 36 8

12 �60 � 36
�

�4 8

12 �24
	

�4 8

0 0

	
1 �2

0 0
, y � s, and x � 2s, so v 1 � 2 1

T
, where s � 1.

Similarly for �2 � �64 : v 2 � 1 � 3
T
.



So we have the general solution: x � �a1 cos 6t � b1 sin6t�
2

1
� �a2 cos 8t � b2 sin8t�

1

�3

OR

x�t� � 2a1 cos 6t � 2b1 sin6t � a2 cos 8t � b2 sin8t,

y�t� � a1 cos 6t � b1 sin6t � 3a2 cos 8t � 3b2 sin8t.

What are the natural frequencies, and in what directions and amplitudes do the masses move?

Problem: �#11b Assume that the two masses above start in motion with the initial conditions:

x�0� � 19, x ��0� � 12, and y�0� � 3, y ��0� � 6, with no external force. Describe the resulting

motion as a superposition of oscillations at two different frequencies.

Applying the first set of initial conditions:

20 � 2a1 cos 0 � 2b1 sin0 � a2 cos 0 � b2 sin0,

3 � a1 cos 0 � b1 sin0 � 3a2 cos 0 � 3b2 sin0.

Simplifying:

20 � 2a1 � a2, 3 � a1 � 3a2.

Solving two equations in two unknowns:

a1 � 3 � 3a2, 20 � 2�3 � 3a2 � � a2 � 6 � 7a2, a2 � 2
a1 � 3 � 6 � 9

x ��t� � �12a1 sin6t � 12b1 cos 6t � 8a2 sin8t � 8b2 cos 8t,

y ��t� � �6a1 sin6t � 6b1 cos 6t � 24a2 sin8t � 24b2 cos 8t.

Applying the derivative initial conditions:

12 � �12a1 sin0 � 12b1 cos 0 � 8a2 sin0 � 8b2 cos 0,

6 � �6a1 sin0 � 6b1 cos 0 � 24a2 sin0 � 24b2 cos 0.

Simplifying:

12 � 12b1 � 8b2,

6 � 6b1 � 24b2.

Solving two equations in two unknowns:
b1 � 1 � 4b2, 12 � 12�1 � 4b2 � � 8b2 � 12 � 40b2, b2 � 0,
b1 � 1.



So: x�t� � 18cos 6t � 2sin6t � 2cos 8t,

y�t� � 9cos 6t � sin6t � 6cos 8t.

Describe the resulting motion as a superposition of oscillations at three different frequencies.

Problem: #15. Suppose that m1 � 2, m2 � 1
2

, k1 � 75, k2 � 25, F0 � 0 100 , and � � 10

(all in mks units) in the forced mass-and-spring system shown. Find the solution of the system

Mx
��
� Kx � F that satisfies the initial conditions x �0� � x

�
�0� � 0.

Recall: For the spring constants, we have this stiffness matrix:

K �
��k1 � k2 � k2

k2 �k2

�
�100 25

25 �25
.

Mass matrix: M �
2 0

0 1
2

, M�1 �
1
2

0

0 2

First we need the general solution of the homogeneous system x
��
� M�1Kx , with

M�1K � A �
�50 25

2

50 �50
.

The eigenvalues of A are �1 � �25 and �2 � �75, so the natural frequencies of the system are �1 � 5

and �2 � 5 3 . Associated eigenvectors are v 1 � 1 2
T

and v 2 � 1 � 2
T
.

So the complementary solution x c�t� is given by�

x1�t� � �a1 cos 5t � b1 sin5t� � a2 cos 5 3 t � b2 sin5 3 t ,

x2�t� � �2a1 cos 5t � 2b1 sin5t� � 2a2 cos 5 3 t � 2b2 sin5 3 t .



Trial solution to "F0 � 0 100
T
, and � � 10" is...

Recall that: x
��
� Ax � f � M�1Kx � M�1F0 cos�t � M�1Kx � 0 200

T
cos 10t

(note from image above that F0 is only directly affecting m2� ).

So trial solution: x trial�t� � c1 c2
T

cos 10t, and we find...

x trial

�
� �10c sin10t, x trial

��
� �100c cos 10t.

x trial

��
� Ax trial � 0 200

T
cos 10t

Substituting...

� 100
c1

c2

cos 10t �
�50 25

2

50 �50

c1

c2

cos 10t �
0

200
cos 10t,

	
�100c1

�100c2

�
�50c1 �

25
2

c2

50c1 � 50c2 � 200
, (two equations in two unknowns)

�50c1 � 25
2

c2, c1 � � 1
4

c2

�50c2 � 50c1 � 200 � 50 � 1
4

c2 � 200

c2 � 1
4

c2 � 4, 3
4

c2 � �4, c2 � � 16
3

and c1 � 4
3

.

So a particular solution x sp�t� is described by�

xsp1�t� � 4
3

cos 10t, xsp2�t� � � 16
3

cos 10t.

General Solution:

x �t� � x c�t� � x sp�t�

x1�t� � �a1 cos 5t � a2 sin5t� � b1 cos 5 3 t � b2 sin5 3 t � 4
3

cos 10t,

x2�t� � �2a1 cos 5t � 2a2 sin5t� � 2b1 cos 5 3 t � 2b2 sin5 3 t � 8
3

cos 10t.

" Initial conditions x �0� � x
�
�0� � 0 "

Finally, when we impose the initial conditions on the solution x �t� � x c�t� � x sp�t�

0 � �a1 cos�0� � 0� � �b1 cos�0� � 0� � 2
3

cos�0� � a1 � b1 �
4
3

,



0 � �2a1 cos�0� � 0� � �2b1 cos�0� � 0� � 8
3

cos�0� � 2a1 � 2b1 � 16
3

.

a1 � �b1 � 4
3

, 2b1 � 2��b1 � 4
3
� � 16

3
, 4b1 � �8,

b1 � �2, a1 � 2
3

.

We find that a1 � 2
3

, a2 � 0, b1 � �2, and b2 � 0.

Thus the solution we seek is described by�

x1�t� � 2
3

cos 5t � 2cos 5 3 t � 4
3

cos 10t,

x2�t� � 4
3

cos 5t � 4 cos 5 3 t � 16
3

cos 10t.

We have a superposition of 2 natural oscillations with the frequencies �1 � 5 and �2 � 5 3 and

forced oscillation with � � 10. In each of the two natural oscillations the amplitude of motion of m2

is twice that of m1, while in the forced oscillation the amplitude of motion of m2 is four times that of

m1. Regarding direction of motion, in oscillation � � 5 the masses are moving in the same direction,

while in the other two oscillations they are moving in opposite directions.


