MATH 2243: Linear Algebra & Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

7.5: Second-Order Systems and Mechanical Applications

Masses (*n* of them) connected to each other and connected to two walls by n + 1 springs. Assume no friction, and that each mass m_j reacts to the spring(s) attached to it by the familiar formula $F = m_j x_j'' = -kx$. So, assuming the mass in question m_j is reacting to two springs (k_j and k_{j+1}), we have: $F = m_j x_j'' = -k_j (x_j - x_{j-1}) + k_{j+1} (x_{j+1} - x_j)$.

Case:
$$n = 3$$

$$m_1 x_1'' = -k_1 x_1 + k_2 (x_2 - x_1), m_2 x_2'' = -k_2 (x_2 - x_1) + k_3 (x_3 - x_2), m_3 x_3'' = -k_3 (x_3 - x_2) + k_4 x_3.$$

Observe that the initial k_1 and the final spring k_{n+1} only have one mass displacement effecting it (x_1 and x_n , respectively).

We can put the displacement x_j of each mass m_j into a **displacement vector**: $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$. Similarly with the masses, we have a **mass matrix**:

$$\mathbf{M} = \left| \begin{array}{ccc} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{array} \right|.$$

For the spring constants, we have this stiffness matrix:

 $\mathbf{K} = \begin{bmatrix} -(k_1 + k_2) & k_2 & 0 \\ k_2 & -(k_2 + k_3) & k_3 \\ 0 & k_3 & -(k_3 + k_4) \end{bmatrix}.$

Using these mathematical objects, we can more elegantly represent the the above system as $\mathbf{M}\mathbf{x}'' = \mathbf{K}\mathbf{x}$. Since \mathbf{M} is invertible, we can calculate \mathbf{M}^{-1} and multiply both sides of the equation (on the left) to simplify our equation further to our familiar $\mathbf{x}'' = \mathbf{A}\mathbf{x}$, where $\mathbf{A} = \mathbf{M}^{-1}\mathbf{K}$.

Solution of Second-Order Homogeneous Systems: $\vec{x}'' = A\vec{x}$

Consider solutions of the form e^{rt} , which we used for single equations. To solve for a **system**, however, we will need to make this into a vector. Multiplying by a generic constant vector \vec{v} , we have $\vec{v}e^{rt}$. Assuming a solution of this form, and plugging it back into our DEQ, we get: $\mathbf{A}\vec{v}e^{rt} = (\vec{v}e^{rt})^{\prime\prime} = r(\vec{v}e^{rt})^{\prime} = r^2\vec{v}e^{rt}$. Dividing by e^{rt} , we get $\mathbf{A}\vec{v} = r^2\vec{v}$. But this is the eigenvector/eigenvalue equation where \vec{v} is an eigenvector for \mathbf{A} , and $\lambda = r^2$ is the associated eigenvalue.

Typically, when systems of equations like these model mechanical systems, we have eigenvalues $\lambda_i = -\omega_i^2$ of **A** which are less than or equal to zero (where each ω_i is a **circular frequency**). This

gives us $r_j = \pm \sqrt{-\omega_j^2} = \pm \omega_j i$. So, for the eigenpair λ_j , \vec{v}_j of **A** we have: $\vec{v}_j e^{i\omega_j t} = (\cos \omega_j t + i \sin \omega_j t) \vec{v}_j$. And from the real and imaginary parts, we get: $\mathbf{x}_j(t) = (a_j \cos \omega_j t + b_j \sin \omega_j t) \vec{v}_j$.

Theorem: If the $n \times n$ matrix **A** has *n* distinct nonpositive eigenvalues $-\omega_1^2$, $-\omega_2^2$, ..., $-\omega_n^2$, with eigenvectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$, then a general solution of $\vec{x}'' = \mathbf{A}\vec{x}$ is given by $\vec{x}(t) = \sum_{j=1}^n (a_j \cos \omega_j t + b_j \sin \omega_j t)\vec{v}_j$, where a_j and b_j are arbitrary constants. In the case where $-\omega_j^2 = 0$, the corresponding part $\vec{x}_j(t)$ of the general solution is $[... + (a_j + b_j t)\vec{v}_j + ...]$.

We wish to convert the solution above to the form $\vec{\mathbf{x}}(t) = \sum_{j=1}^{n} c_j \cos(\omega_j t - \alpha_j) \vec{v}_j$, where α_j is the "phase shift" or "phase angle."

So, recall (or learn for the first time) that if we have: $A \cos \omega t + B \sin \omega t$.

and wish to alter it to be like: $C\cos(\omega t - \alpha)$, (where *C* turns out to be the amplitude of the vibration)

we let A and B be the legs of a right triangle. Then the hypotenus is: $C = \sqrt{A^2 + B^2}$.

With angle α (opposite of *B*), recall we have: $\cos \alpha = \frac{A}{C}$, $\sin \alpha = \frac{B}{C}$, where $\alpha = \begin{cases} \tan^{-1} \frac{B}{A} & \text{if } A, B > 0 \text{ (1st quadrant),} \\ \pi + \tan^{-1} \frac{B}{A} & \text{if } A < 0 \text{ (2nd/3rd quadrant),} \\ 2\pi + \tan^{-1} \frac{B}{A} & \text{if } A > 0, B < 0 \text{ (4th quadrant).} \end{cases}$

Thus we transform into, $A \cos \omega t + B \sin \omega t = C(\frac{A}{C} \cos \omega t + \frac{B}{C} \sin \omega t)$ $= C(\cos \alpha \cos \omega t + \sin \alpha \sin \omega t).$ **Recall the Trigonometric Identity**: $\cos x \cos y + \sin y \sin x = \cos(x - y) = \cos(y - x).$ So we get: $C \cos(\omega t - \alpha)$, where *C* is the **amplitude**, ω is the **circular frequency** in $\frac{rad}{sec}$, and α is the **phase angle**. **Period of Motion**: $T = \frac{2\pi}{\omega} sec$. **Frequency**: $v = \frac{1}{T} = \frac{\omega}{2\pi} in \frac{cycles}{sec}$. So returning to $\vec{\mathbf{x}}(t)$, we have $\vec{\mathbf{x}}_j(t) = c_j(\cos \alpha_j \cos 5t + \sin \alpha_j \sin 5t)\vec{v}_j = c_j \cos(5t - \alpha_j)\vec{v}_j$.

Superposition of Wave Frequecies ω_1 and ω_2 :

Here is a video showing the kinds of movements involved in this section: https://www.youtube.com/watch?v=cu4TvUwk17g

Forced Oscillations and Resonance:

Let $\mathbf{M}\vec{\mathbf{x}}^{"} = \mathbf{K}\vec{\mathbf{x}} + \vec{\mathbf{F}}$ where $\vec{\mathbf{F}} = \begin{bmatrix} F_1(t) \ F_2(t) \ \dots \ F_n(t) \end{bmatrix}^T$ are the external forces acting on the masses (m_1, m_2, \dots, m_n) . So, $\vec{\mathbf{x}}^{"} = \mathbf{A}\vec{\mathbf{x}} + \vec{\mathbf{f}}$, where $\vec{\mathbf{f}} = \begin{bmatrix} \frac{F_1(t)}{m_1} & \frac{F_2(t)}{m_2} & \dots & \frac{F_n(t)}{m_2} \end{bmatrix}^T$ is the external force vector **per unit mass**. Often the external forces are periodic, and we have $\vec{\mathbf{f}}(t) = \vec{\mathbf{F}}_0 \cos \omega t$, where $\vec{\mathbf{F}}_0$ is some constant vector. We obtain **resonance** when the external (forced) frequency ω is equal to one of the system's internal frequencies $\{\omega_1, \omega_2, \dots, \omega_n\}$. Undetermined coefficients suggests a trial solution of: $\vec{\mathbf{x}}_{trial}(t) = \vec{\mathbf{c}} \cos \omega t$. (why not "+ $\vec{\mathbf{b}} \sin \omega t$ "??) We solve for particular solution by plugging in this trial solution,

and determining the coefficients: $\vec{c} = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix}$.

As with a single equation with forced oscillation, we have a periodic and transient solution $\vec{\mathbf{x}}(t) = \vec{\mathbf{x}}_{tr}(t) + \vec{\mathbf{x}}_{sp}(t)$ (see section 5.6). Given any damping, the transient solution eventually disappears leaving only the periodic solution (which is being induced by the external force).

Problem: #7 Suppose a mass-and-spring system have the following stiffness matrix...

$$\mathbf{K} = \begin{bmatrix} -(k_1 + k_2) & k_2 \\ k_2 & -(k_2 + k_3) \end{bmatrix}$$

and has the following values for the mass and spring constants...

$$m_1 = m_2 = 1;$$
 $k_1 = 4, k_2 = 6, k_3 = 4.$

Find the two natural frequencies of the system and describe its two natural modes of oscillation.

$$\mathbf{M}\vec{\mathbf{x}}^{"} = \mathbf{K}\vec{\mathbf{x}} \quad \text{or} \quad \mathbf{x}^{"} = \mathbf{M}^{-1}\mathbf{K}\vec{\mathbf{x}}.$$
$$\mathbf{M} = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \mathbf{M}^{-1}.$$

So,
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -(4+6) & 6 \\ 6 & -(6+4) \end{bmatrix} = \begin{bmatrix} -10 & 6 \\ 6 & -10 \end{bmatrix}$$
.

$$\begin{vmatrix} -10 - \lambda & 6 \\ 6 & -10 - \lambda \end{vmatrix} = (10 - \lambda)^2 - 36 = \lambda^2 + 20\lambda + 64 = (\lambda + 16)(\lambda + 4).$$

Eigenvalues $\lambda_1 = -4$ and $\lambda_2 = -16$,

with associated eigenvectors $v_1 = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and $v_2 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$.

Recall: " $\vec{\mathbf{x}}(t) = \sum_{j=1}^{n} (a_j \cos \omega_j t + b_j \sin \omega_j t) \vec{v}_j$ " and "Eigenvalues: $\lambda = -\omega_i^2$ "

Therefore:
$$\mathbf{x}(t) = (a_1 \cos 2t + b_1 \sin 2t) \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (a_2 \cos 4t + b_2 \sin 4t) \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

 $x_1(t) = a_1 \cos 2t + b_1 \sin 2t + a_2 \cos 4t + b_2 \sin 4t,$ $x_2(t) = a_1 \cos 2t + b_1 \sin 2t - a_2 \cos 4t - b_2 \sin 4t.$

"Describe its two natural modes of oscillation."

The natural frequencies are $\omega_1 = 2$ and $\omega_2 = 4$. In the natural mode with frequency 2, the two masses m_1 and m_2 move in the same direction with equal amplitudes of oscillation. At frequencies 4, they move in opposite directions with equal amplitudes.

Problem: #10 The mass-and-spring system of the problem #7 (above) is set in motion from rest [$x'_1(0) = x'_2(0) = 0$], at its equilibrium position [$x_1(0) = x_2(0) = 0$], with external forces $F_1(t) = 30 \cos t$ and $F_2(t) = 60 \cos t$ acting on the masses m_1 and m_2 , respectively. Find the resulting motion of the system and describe it as a superposition of oscillations.

Recall:
$$\vec{\mathbf{x}}'' = \mathbf{A}\vec{\mathbf{x}} + \vec{\mathbf{f}}$$
, $m_1 = 1$, $m_2 = 1$, and $\mathbf{A} = \begin{bmatrix} -10 & 6 \\ 6 & -10 \end{bmatrix}$.

Observe that $\vec{\mathbf{f}} = \mathbf{M}^{-1}\mathbf{F} = \mathbf{F} = [30\cos t, 60\cos t]$ (since $\mathbf{M} = \mathbf{I}$).

So, forming the nonhomogeneous DEQ $\vec{\mathbf{x}}'' = \mathbf{A}\vec{\mathbf{x}} + \vec{\mathbf{f}}$, we have:

$$x_1'' = -10x_1 + 6x_2 + 30\cos t,$$

$$x_2'' = 6x_1 - 10x_2 + 60\cos t \qquad (*)$$

Recall complementary solution from prob. 7:

$$x_{c,1}(t) = a_1 \cos 2t + a_2 \sin 2t + b_1 \cos 4t + b_2 \sin 4t$$

$$x_{c,2}(t) = a_1 \cos 2t + a_2 \sin 2t - b_1 \cos 4t - b_2 \sin 4t$$

Recall from the review that the "**trial solution is**: $\vec{x}_{trial}(t) = \vec{c} \cos \omega t$," where we can label the components $\vec{c} := \begin{bmatrix} d_1 & d_2 \end{bmatrix}$.

Taking derivatives of the of the trial solution $x_1 = d_1 \cos t$, $x_2 = d_2 \cos t$ in order to substitute into the system (*):

$$\begin{aligned} x_1' &= -d_1 \sin t, \quad x_2' = -d_2 \sin t, \quad x_1'' = -d_1 \cos t, \quad x_2'' = -d_2 \cos t. \\ (-d_1 \cos t) &= -10(d_1 \cos t) + 6(d_2 \cos t) + 30 \cos t, \\ (-d_2 \cos t) &= 6(d_1 \cos t) - 10(d_2 \cos t) + 60 \cos t. \end{aligned}$$

Dividing by $\cos t$:

 $-d_1 = -10d_1 + 6d_2 + 30,$ $-d_2 = 6d_1 - 10d_2 + 60.$ (two equations in two unknowns)

$$9d_1 = 6d_2 + 30, \ 9d_2 = 6d_1 + 60; \qquad d_1 = \frac{2}{3}d_2 + \frac{10}{3}, \ d_2 = \frac{2}{3}(\frac{2}{3}d_2 + \frac{10}{3}) + \frac{20}{3}$$

$$\frac{5}{9}d_2 = \frac{80}{9}, \ d_2 = 16, \qquad d_1 = \frac{2}{3} \cdot 16 + \frac{10}{3} = 14.$$

So a general solution is given by:

$$x_1(t) = a_1 \cos 2t + a_2 \sin 2t + b_1 \cos 4t + b_2 \sin 4t + 14 \cos t,$$

$$x_2(t) = a_1 \cos 2t + a_2 \sin 2t - b_1 \cos 4t - b_2 \sin 4t + 16 \cos t.$$
 (**)

Initial conditions: $x_1(0) = x_2(0) = 0$

$$0 = a_1 + b_1 + 14,$$
 $0 = a_1 - b_1 + 16;$

So: $a_1 = -(b_1 + 14),$ $0 = -(b_1 + 14) - b_1 + 16,$ $2b_1 = 2, b_1 = 1;$ $a_1 = -(1 + 14) = -15.$

Now taking the derivative for the initial condition: $x'_1(0) = x'_2(0) = 0$:

$$\begin{aligned} x_1' &= -a_1 \sin 2t + a_2 \cos 2t - b_1 \sin 4t + b_2 \cos 4t - 14 \sin t, \\ x_2' &= -a_1 \sin 2t + a_2 \cos 2t + b_1 \sin 4t - b_2 \cos 4t - 16 \sin t. \\ 0 &= a_2 + b_2, \qquad 0 = a_2 - b_2; \\ a_2 &= b_2, \qquad b_2 = -(b_2); \qquad b_2 = 0, \qquad a_2 = 0. \end{aligned}$$

The resulting particular solution from (* *) is:

 $x_1(t) = \cos 4t - 15 \cos 2t + 14 \cos t,$

 $x_2(t) = -\cos 4t - 15\cos 2t + 16\cos t.$

"Describe it as a superposition of oscillations at three different frequencies."

We have a superposition of three oscillations, in which the two masses:

- Move in opposite directions with frequency $\omega_3 = 4$ and equal amplitudes.
- Move in the same direction with frequency $\omega_2 = 2$ and equal amplitudes;
- Move in the same direction with frequency $\omega_1 = 1$ and with the amplitude of motion of m_2 being 16, and m_1 being 14.

Problem: #11a Consider a mass-and-spring system containing two masses $m_1 = 1$ and $m_2 = 1$ whose displacement functions x(t) and y(t) satisfy the differential equations: x'' = -40x + 8y, y'' = 12x - 60y. What are the natural frequencies, and in what directions and amplitudes do the masses move?

$$\mathbf{A} = \begin{bmatrix} -40 & 8\\ 12 & -60 \end{bmatrix},$$

Determining the eigenvalues:

$$\begin{vmatrix} -40 - \lambda & 8 \\ 12 & -60 - \lambda \end{vmatrix} \Rightarrow (40 + \lambda)(60 + \lambda) - 96 = \lambda^2 + 100\lambda + 2304 \\ = (\lambda + 64)(\lambda + 36). \text{ So: } \lambda_{1,2} = -36, -64. \end{cases}$$

$$\lambda_{1} = -36: \begin{bmatrix} -40+36 & 8\\ 12 & -60+36 \end{bmatrix} = \begin{bmatrix} -4 & 8\\ 12 & -24 \end{bmatrix} \Rightarrow \begin{bmatrix} -4 & 8\\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & -2\\ 0 & 0 \end{bmatrix}, \quad y = s, \text{ and } x = 2s, \text{ so } \overrightarrow{v}_{1} = \begin{bmatrix} 2 & 1 \end{bmatrix}^{T}, \text{ where } s = 1.$$

Similarly for $\lambda_2 = -64$: $\vec{v}_2 = \begin{bmatrix} 1 & -3 \end{bmatrix}^T$.

So we have the general solution: $\vec{x} = (a_1 \cos 6t + b_1 \sin 6t) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (a_2 \cos 8t + b_2 \sin 8t) \begin{bmatrix} 1 \\ -3 \end{bmatrix}$

$$= (a_1 \cos 6i + b_1 \sin 6i) \begin{bmatrix} 1 \end{bmatrix} + (a_2 \cos 8i + b_2 \sin 6i) \begin{bmatrix} 1 \end{bmatrix}$$

$$x(t) = 2a_1\cos 6t + 2b_1\sin 6t + a_2\cos 8t + b_2\sin 8t,$$

$$y(t) = a_1 \cos 6t + b_1 \sin 6t - 3a_2 \cos 8t - 3b_2 \sin 8t.$$

What are the natural frequencies, and in what directions and amplitudes do the masses move?

Assume that the two masses above start in motion with the initial conditions: Problem: ≈#11b x(0) = 19, x'(0) = 12, and y(0) = 3, y'(0) = 6, with no external force. Describe the resulting motion as a superposition of oscillations at two different frequencies.

Applying the first set of initial conditions:

 $20 = 2a_1\cos 0 + 2b_1\sin 0 + a_2\cos 0 + b_2\sin 0,$ $3 = a_1 \cos 0 + b_1 \sin 0 - 3a_2 \cos 0 - 3b_2 \sin 0.$

Simplifying:

OR

$$20 = 2a_1 + a_2, \qquad 3 = a_1 - 3a_2.$$

Solving two equations in two unknowns:
 $a_1 = 3 + 3a_2, \qquad 20 = 2(3 + 3a_2) + a_2 = 6 + 7a_2, \qquad a_2 = 2$
 $a_1 = 3 + 6 = 9$
 $x'(t) = -12a_1 \sin 6t + 12b_1 \cos 6t - 8a_2 \sin 8t + 8b_2 \cos 8t,$
 $y'(t) = -6a_1 \sin 6t + 6b_1 \cos 6t + 24a_2 \sin 8t - 24b_2 \cos 8t.$

Applying the derivative initial conditions:

 $12 = -12a_1\sin 0 + 12b_1\cos 0 - 8a_2\sin 0 + 8b_2\cos 0,$ $6 = -6a_1\sin 0 + 6b_1\cos 0 + 24a_2\sin 0 - 24b_2\cos 0.$

Simplifying:

 $12 = 12b_1 + 8b_2$ $6 = 6b_1 - 24b_2$. Solving two equations in two unknowns: $b_1 = 1 - 4b_2$, $12 = 12(1 - 4b_2) + 8b_2 = 12 - 40b_2$, $b_2 = 0$, $b_1 = 1.$

So: $x(t) = 18\cos 6t + 2\sin 6t + 2\cos 8t$,

 $y(t) = 9\cos 6t + \sin 6t - 6\cos 8t.$

Describe the resulting motion as a superposition of oscillations at three different frequencies.

Problem: #15. Suppose that $m_1 = 2$, $m_2 = \frac{1}{2}$, $k_1 = 75$, $k_2 = 25$, $\vec{\mathbf{F}}_0 = \begin{bmatrix} 0 & 100 \end{bmatrix}$, and $\omega = 10$ (all in *mks* units) in the forced mass-and-spring system shown. Find the solution of the system $\mathbf{M}\vec{x}'' = \mathbf{K}\vec{x} + \mathbf{F}$ that satisfies the initial conditions $\vec{x}(0) = \vec{x}'(0) = \vec{0}$.

Recall: For the spring constants, we have this stiffness matrix:

$$\mathbf{K} = \begin{bmatrix} -(k_1 + k_2) & k_2 \\ k_2 & -k_2 \end{bmatrix} = \begin{bmatrix} -100 & 25 \\ 25 & -25 \end{bmatrix}.$$
Mass matrix:
$$\mathbf{M} = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}, \quad \mathbf{M}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$$

First we need the general solution of the homogeneous system $\vec{x}'' = \mathbf{M}^{-1}\mathbf{K}\vec{x}$, with $\mathbf{M}^{-1}\mathbf{K} = \mathbf{A} = \begin{bmatrix} -50 & \frac{25}{2} \\ 50 & -50 \end{bmatrix}$.

The eigenvalues of **A** are $\lambda_1 = -25$ and $\lambda_2 = -75$, so the natural frequencies of the system are $\omega_1 = 5$ and $\omega_2 = 5\sqrt{3}$. Associated eigenvectors are $\vec{v}_1 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and $\vec{v}_2 = \begin{bmatrix} 1 & -2 \end{bmatrix}^T$.

So the complementary solution $\vec{x}_c(t)$ is given by...

$$x_1(t) = (a_1 \cos 5t + b_1 \sin 5t) + (a_2 \cos 5\sqrt{3}t + b_2 \sin 5\sqrt{3}t),$$

$$x_2(t) = (2a_1 \cos 5t + 2b_1 \sin 5t) - (2a_2 \cos 5\sqrt{3}t + 2b_2 \sin 5\sqrt{3}t).$$

Trial solution to " $\vec{\mathbf{F}}_0 = \begin{bmatrix} 0 & 100 \end{bmatrix}^T$, and $\omega = 10$ " is...

Recall that: $\vec{x}'' = \mathbf{A}\vec{x} + \vec{\mathbf{f}} = \mathbf{M}^{-1}\mathbf{K}\vec{x} + \mathbf{M}^{-1}\vec{\mathbf{F}}_0\cos\omega t = \mathbf{M}^{-1}\mathbf{K}\vec{x} + \begin{bmatrix} 0 & 200 \end{bmatrix}^T\cos 10t$ (note from image above that $\vec{\mathbf{F}}_0$ is only directly affecting $m_2...$).

So trial solution: $\vec{x}_{trial}(t) = \begin{bmatrix} c_1 & c_2 \end{bmatrix}^T \cos 10t$, and we find... $\vec{x}'_{trial} = -10\vec{c}\sin 10t$, $\vec{x}''_{trial} = -100\vec{c}\cos 10t$.

 $\vec{x}_{trial}^{\prime\prime} = \mathbf{A}\vec{x}_{trial} + \begin{bmatrix} 0 & 200 \end{bmatrix}^T \cos 10t$

Substituting...

$$-100\begin{bmatrix} c_1\\ c_2\end{bmatrix}\cos 10t = \begin{bmatrix} -50 & \frac{25}{2}\\ 50 & -50 \end{bmatrix}\begin{bmatrix} c_1\\ c_2\end{bmatrix}\cos 10t + \begin{bmatrix} 0\\ 200\end{bmatrix}\cos 10t,$$

$$\Rightarrow \begin{bmatrix} -100c_1\\ -100c_2\end{bmatrix} = \begin{bmatrix} -50c_1 + \frac{25}{2}c_2\\ 50c_1 - 50c_2 + 200\end{bmatrix}, \quad \text{(two equations in two unknowns)}$$

$$-50c_1 = \frac{25}{2}c_2, \qquad c_1 = -\frac{1}{4}c_2$$

$$-50c_2 = 50c_1 + 200 = 50\left(-\frac{1}{4}c_2\right) + 200$$

$$c_2 = \frac{1}{4}c_2 - 4, \qquad \frac{3}{4}c_2 = -4, \qquad c_2 = -\frac{16}{3} \text{ and } c_1 = \frac{4}{3}.$$

So a particular solution $\vec{x}_{sp}(t)$ is described by...

 $x_{sp_1}(t) = \frac{4}{3}\cos 10t, \qquad x_{sp_2}(t) = -\frac{16}{3}\cos 10t.$

General Solution:

$$\vec{x}(t) = \vec{x}_{c}(t) + \vec{x}_{sp}(t)$$

$$x_{1}(t) = (a_{1}\cos 5t + a_{2}\sin 5t) + (b_{1}\cos 5\sqrt{3}t + b_{2}\sin 5\sqrt{3}t) + \frac{4}{3}\cos 10t,$$

$$x_{2}(t) = (2a_{1}\cos 5t + 2a_{2}\sin 5t) - (2b_{1}\cos 5\sqrt{3}t + 2b_{2}\sin 5\sqrt{3}t) - \frac{8}{3}\cos 10t.$$

" Initial conditions $\vec{x}(0) = \vec{x}'(0) = \vec{0}$ "

Finally, when we impose the initial conditions on the solution $\vec{x}(t) = \vec{x}_c(t) + \vec{x}_{sp}(t)$

 $0 = (a_1 \cos(0) + 0) + (b_1 \cos(0) + 0) + \frac{2}{3} \cos(0) = a_1 + b_1 + \frac{4}{3},$

$$0 = (2a_1\cos(0) + 0) - (2b_1\cos(0) + 0) - \frac{8}{3}\cos(0) = 2a_1 - 2b_1 - \frac{16}{3}$$

$$a_1 = -b_1 - \frac{4}{3}, \qquad 2b_1 = 2(-b_1 - \frac{4}{3}) - \frac{16}{3}, \qquad 4b_1 = -8,$$

 $b_1 = -2, \qquad a_1 = \frac{2}{3}.$

We find that $a_1 = \frac{2}{3}$, $a_2 = 0$, $b_1 = -2$, and $b_2 = 0$.

Thus the solution we seek is described by...

$$x_1(t) = \frac{2}{3}\cos 5t - 2\cos 5\sqrt{3}t + \frac{4}{3}\cos 10t,$$

$$x_2(t) = \frac{4}{3}\cos 5t + 4\cos 5\sqrt{3}t - \frac{16}{3}\cos 10t.$$

We have a superposition of 2 natural oscillations with the frequencies $\omega_1 = 5$ and $\omega_2 = 5\sqrt{3}$ and forced oscillation with $\omega = 10$. In each of the two natural oscillations the amplitude of motion of m_2 is twice that of m_1 , while in the forced oscillation the amplitude of motion of m_2 is four times that of m_1 . Regarding direction of motion, in oscillation $\omega = 5$ the masses are moving in the same direction, while in the other two oscillations they are moving in opposite directions.