MATH 2243: Linear Algebra & Differential Equations

Discussion Instructor: Jodin Morey = moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

7.5: Second-Order Systems and Mechanical Applications
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Masses (n of them) connected to each other and connected to two walls by n + 1 springs. Assume no
friction, and that each mass m; reacts to the spring(s) attached to it by the familiar formula

F = mjx; = —kx. So, assuming the mass in question m; is reacting to two springs (k; and kj.1), we
have: F = mjxj/-' = —kj(xj —)Cj_l) + kj+1 (Xj+1 —)Cj).

Case:n=3

mlx/ll = —kix1 + kz(XQ —xl),

mzx/zl = —ka(x2 —x1) + k3(x3 — x2),

m3x/3' = —k3 (JC3 —JC2) + k4X3.
Observe that the initial k; and the final spring k.1 only have one mass displacement effecting it (x;
and x,, respectively).

We can put the displacement x; of each mass m; into a displacement vector: X = [x1 X2 X3 ]
Similarly with the masses, we have a mass matrix:
m 0 O
M = 0 my O
0 O mj
For the spring constants, we have this stiffness matrix:
—(k1 +k2) k> 0
K= k> —(ka +k3) k3
0 k3 —(k3 + ks)

Usir)/g these mathematical objects, we can more elegantly represent the the above system as
MX = KX. Since M is invertible, we can calculate M“Nand multiply both sides of the equation (on
the left) to simplify our equation further to our familiar X = AX, where A = M~ 1K.

Solution of Second-Order Homogeneous Systems: 3" - ax

Consider solutions of the form e”, which we used for single equations. To solve for a system,
however, we will need to make this into a vector. Multiplying by a generic constant vector v, we have
Ve. Assuming a solution of this form, and plugging it back into our DEQ, we get:

AVe = <Ve”>” = r(Ve”)l = r¥ve”.

Dividing by e, we get AV = r>v. But this is the eigenvector/eigenvalue equation where V is an
eigenvector for A, and 1 = r? is the associated eigenvalue.

Typically, when systems of equations like these model mechanical systems, we have eigenvalues
Aj = —a)jz of A which are less than or equal to zero (where each w; is a circular frequency). This



gives us rj = £ [-w; = fwj;i. So, for the eigenpair 1;,V; of A we have: Ve’ = (cosw;t + isinw;t)
And from the real and imaginary parts, we get: x;(t) = (a;cosw;t + b;sinw;t)V;.

Theorem: If the n x n matrix A has n distinct nonpositive eigenvalues ~w?, -3, ..., — o2, with
. . " . .
eigenvectors V1,V», ..., V., then a general solution of X = AX is given by
X() = D" (ajcoswjt + bjsinw;t)V;, where a; and b; are arbitrary constants. In the case where
j=1

—w? = 0, the corresponding part X;(r) of the general solution is [... + (a; + bj))V; +...].

We wish to convert the solution above to the form X(7) = Z}’.“:l cjcos(wjt — a;)V;, where a; is the

"phase shift" or "phase angle."

So, recall (or learn for the first time) that if we have: A coswt + Bsin .

and wish to alter it to be like: Ccos(wt — a), (where C turns out to be the amplitude of the
vibration)

we let A and B be the legs of a right triangle. Then the hypotenus is: C = JA? + B2.

With angle a (opposite of B), recall we have: cosa = %, sina = %,
tan' £ if A,B > 0 (1st quadrant),
where a = m+tan'L  if A <0 (2nd/3rd quadrant),

A
2z +tan"' £ if A > 0,B < 0 (4th quadrant).

Thus we transform into, Acoswt + Bsinot = C(4 coswt + £ sinwt)
= C(cosacosmt + sina sinwt).
Recall the Trigonometric Identity: cosxcosy+ sinysinx = cos(x —y) = cos(y — x).
So we get: Ccos(wr — a), where C is the amplitude,
o is the circular frequency in 24, and « is the phase angle.
Period of Motion: 7= 3£ sec. ~ Frequency:v = 4 = -2 in ades |
So returning to X(#), we have X;(t) = cj(cosa;cos 5t + sina;sin5t)V; = cjcos(5t — a;)V;.
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Here is a video showing the kinds of movements involved in this section:
https://www.youtube.com/watch?v=cu4TvUwk17g

Forced Oscillations and Resonance:

N
%



Let MX" = KX + F where F = [Fl(t) Fa(1) ... Fn(t)]T are the external forces acting on the masses
(ml, mmz, ..., mn>

— — T. -
So, X" = AX + f, where fz[ F@ B0 50 } is the external force vector per unit mass.

mi my ma

Often the external forces are periodic,

and we have ?(r) = fo coswt, where fo is some constant vector.
We obtain resonance when the external (forced) frequency w is equal

to one of the system’s internal frequencies {w,w2,...,®,}.
Undetermined coefficients suggests a trial solution of:

Ruia(f) = Ccoswt. (why not "+b sinwr" 2?)
We solve for particular solution by plugging in this trial solution,

and determining the coefficients: € = [ci ¢ ... ¢ |-

As with a single equation with forced oscillation, we have a periodic and transient solution
X(1) = X, (t) + X, (?) (see section 5.6). Given any damping, the transient solution eventually
disappears leaving only the periodic solution (which is being induced by the external force).

Problem: #7 Suppose a mass-and-spring system have the following stiffness matrix...

—(k1 + kz) kz
k2 —(k2 + k3)

K =

and has the following values for the mass and spring constants...
m1=m2=1; k1=4,k2=6,k3=4.

Find the two natural frequencies of the system and describe its two natural modes of oscillation.

/!
MX =KX or x" = M1KX.

nmi O 1 0
M = =
0 n» 0 1
=M.
10 —(4 +6) 6 ~10 6
So, A = =
01 6 —(6+4) 6 -10
-10- 7

= (10=-A)2=-36=A12+201+64 = (A+ 16)(1 +4).
¢ 104 ( ) ( )( )

Eigenvalues A1 = —4 and 1, = 16,



with associated eigenvectors v| = [1 1 ]T and v, = [1 -1 ]T.

Recall: "X(¢) = > (ajcoswjt +bjsinw;t)v;"  and  "Eigenvalues: 1 = —o}"

1 1
Therefore: x(f) = (a;cos2t+ b sin2t)|: | :| + (aycosdt + b, sin4t)|: | :|

x1(t) = a; cos2t+ by sin2t + a, cos4dt + b, sin4t,

x2(t) = a; cos2t+ by sin2t — a, cos4dt — b, sin4t.
"Describe its two natural modes of oscillation."

The natural frequencies are ®; = 2 and @, = 4. In the natural mode with frequency 2, the two masses
m; and m, move in the same direction with equal amplitudes of oscillation. At frequencies 4, they
move in opposite directions with equal amplitudes.

Problem: #10  The mass-and-spring system of the problem #7 (above) is set in motion from rest [
x1(0) = x5(0) = 01, at its equilibrium position [ x;(0) = x2(0) = 0 ], with external forces

F1(t) = 30cost and F,(t) = 60cost acting on the masses m; and m,, respectively. Find the resulting
motion of the system and describe it as a superposition of oscillations.

N o = -10 6
Recall: X =AX+f, m =1, my=1, and A = ¢ o |

Observe that f = M™'F = F = [30cost, 60cost ] (since M = I).

. " -
So, forming the nonhomogeneous DEQ X = AX + f, we have:
x] = —10x; + 6x2 + 30cost,

x5 = 6x1 — 10x2 + 60cos? (%)

Recall complementary solution from prob. 7:

Xc1(t) = aycos2t+ aysin2t + by cosdt + b, sindt



Xco(t) = aycos2t+ aysin2t — by cosdt — b, sindt

Recall from the review that the "trial solution is: X ,iu(f) = ¢ coswt," where we can label the
components € := [di da |.

Taking derivatives of the of the trial solution x; = d;cost, x» = d,cost in order to substitute into
the system (x):

x| = —disint, x5 = —d,sint, x| = —djcost, x5 = —d,cost.
(—dicost) = —10(d; cost) + 6(d,cost) + 30cost,
(—d>cost) = 6(d;cost) — 10(d, cost) + 60cost.

Dividing by cos? :
— d1 = —10d1 + 6d2 + 30,

—dr = 6dy —10d, + 60. (two equations in two unknowns)

9dy = 6dy +30, 9> = 6d1 +60;  di = 2dr+ 2, dy =2+ L)+ 2
2dy =8, d, =16, di=2%.
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So a general solution is given by:
x1(t) = a;cos2t+ a; sin2t + by cos4t + b, sindt + 14 cost,

x2(t) = a;cos2t+ a,sin2t — by cosdt — by sindt + 16 cost. (% x)

Initial conditions: x1(0) = x2(0) = 0
O=a1+b1+14, O=a1—b1+16;

So:  ay=—(b+14),  0=—(b, +14) b, + 16,
2by =2, b = 1; ay = —(1 + 14) = —15.

Now taking the derivative for the initial condition: x}(0) = x5(0) = 0:
x| = —aisin2t + a> cos2t — by sin4t + b, cos4t — 14sint,
Xh = —aisin2t + a, cos2t + by sindt — b, cos 4t — 16sint.
0 =as+ by, 0 =az—by;
4> = by, by =—(b2); br=0, a»=0.



The resulting particular solution from (x *) is:
x1(t) = cosdt — 15cos2t + 14 cost,
x2(t) = —cos4t— 15cos2t + 16cost.

"Describe it as a superposition of oscillations at three different frequencies."

We have a superposition of three oscillations, in which the two masses:

« Move in opposite directions with frequency w3 = 4 and equal amplitudes.
* Move in the same direction with frequency w, = 2 and equal amplitudes;

* Move in the same direction with frequency w; = 1 and with the amplitude of motion of m; being
16, and m being 14.

Problem: #11a Consider a mass-and-spring system containing two masses m; = 1 and m, = 1
whose displacement functions x(¢) and y(¢) satisfy the differential

equations:  x" = —40x+ 8y,  y" = 12x — 60y.

What are the natural frequencies, and in what directions and amplitudes do the masses move?

—40 8
A == ’
12 -60
Determining the eigenvalues:

—40 -1 8

= (40 + A)(60 + 1) —96 = A2 + 1001 + 2304
12 —60 — 4

= (A+64)(A+36). So: 12 =-36,-64.

—40 + 36 8 —4 8 —4 8
A =-36: = =
12 —60 + 36 12 24 0 0
= , y =s, and x = 2s, sov1=[21],wheres=l.

0 O

Similarly for 1, = =64 : ¥V, = [1 =3]".



> . 2 . 1
So we have the general solution: X = (a; cos 6t + b sin 6t)|: : :| + (ay cos 8t + b, sin 8t)|: ; :|
OR
x(t) = 2ay cos6t + 2b; sin6f + a, cos 8¢ + b, sin 8¢,
y(t) = a;cos6t+ b sin6t — 3a; cos 8t — 3b, sin 8¢.

What are the natural frequencies, and in what directions and amplitudes do the masses move?

Problem: ~#11b Assume that the two masses above start in motion with the initial conditions:
x(0) = 19, x'(0) = 12, and y(0) = 3, y'(0) = 6, with no external force. Describe the resulting
motion as a superposition of oscillations at two different frequencies.

Applying the first set of initial conditions:
20 = 2a;c0s0+ 2b;sin0 + a, cosO + b, sin0,

3 =a1cos0+ b;sin0 — 3a;cos0 — 3b,sin0.

Simplifying:

20 = 2a; + as, 3 =a; —3as.

Solving two equations in two unknowns:
ay = 3+ 3apy, 20 =23+ 3az2) +ax = 6+ 7ax, a =2
ar =3+ 6=9

x'(t) = —12a, sin6¢ + 12b cos 6¢ — 8a, sin 8¢ + 8b, cos 81,
y'(t) = —6a; sin 6t + 6b cos 6 + 24a, sin 8¢ — 24b, cos 8t.

Applying the derivative initial conditions:
12 = =12a;sin0 + 12b; cos0 — 8a, sin0 + 85, cos 0,
6 = —6a,sin0 + 6b1cos0 + 24a, sin0 — 24b, cos 0.

Simplifying:
12 = 12b, + 8b2,

6 = 6D — 24b,.

Solving two equations in two unknowns:
by =1—-4b,, 12 = 12(1 —4b3) + 8by = 12 —40b,, by =0,
by = 1.



So: x(t) = 18cos 6t + 2sin 67 + 2 cos 8¢,
y(t) = 9cos6¢ + sin 6z — 6 cos 8¢.

Describe the resulting motion as a superposition of oscillations at three different frequencies.

Problem: #15.  Suppose that m, = 2, m> = +, ky = 75, k> = 25, Fo = [0 100], and ® = 10
(all in mks units) in the forced mass-and-spring system shown. Find the solution of the system
M2 = K72 + F that satisfies the initial conditions ¥(0) = % (0) = 0.

Recall: For the spring constants, we have this stiffness matrix:

K = —(k1+k2) kz B -100 25
ko —k> 25 25 |

. 20 10
Mass matrix: M = e M =
0 5 0 2

. . I .
First we need the general solution of the homogeneous system ¥ = M'KX, with

-50 2
MK =A = ’
50 =50
The eigenvalues of A are 1 = —25 and A, = 75, so the natural frequencies of the system are w; = 5

and o, = 5J§. Associated eigenvectors are Vi, = [1 2]T and vV, = [1 — 2]T.

So the complementary solution X.(f) is given by...
x1(t) = (aycos5t+ by sinSt) + <a2 cos5J3t+ b sin5ﬁt>,
x2(f) = (2ar cos St + 2b sin5t) — (2azc0s 53+ 2bysin5/31).



Trial solution to ”F)O = [O lOO]T, and w = 10" 1s...

Recall that: ®' = AR+ f = M'KZ+M'Focosor = M'K2+ [0 200]" cos 10t

(note from image above that i‘)o is only directly affecting ms...).

. . T .
So trial solution: X yiu() = [01 cz] cos 10z, and we find...

/ . 11
X i = —10C sin 10z, X i = —100¢ cos 10¢.

Riat = AR i+ [0 200]" cos 10z

Substituting...
- 100 cos 10t = cos 107 + cos 10¢,
C2 50 =50 C2 200
—100¢; —50c1 + 2-c2 L
= = , (two equations in two unknowns)
—10002 5061 - 50C2 + 200
—50C1 = 2—2502, Ccl1 = —%Cz
=502 = 50c1 +200 = 50(=+c2) +200
Ccy = %02 -4, %02 =4, Cyr = —13—6 and Cc| = %

So a particular solution X, () is described by...
X, (1) = +cos10r,  xgp, (1) = —1& cos 101,
General Solution:
X(t) = X.(t) + Xy (D)
x1(¢t) = (a; cos5t+ a,sinSt) + (bl cos5/3t+ b, sin5,/§t> + 4 cos 10z,
x2(t) = (2a; cos 5t + 2a, sin 5t) — <2b1 cos5./3t+2b, sin5,/§t> — £ cos 10,

" Initial conditions ¥(0) = ¥ (0) = 0 "
Finally, when we impose the initial conditions on the solution X(f) = X.(£) + ¥, (¢)
0 = (a1 cos(0) +0) + (b1 cos(0) +0) + % cos(0) = a; + b, + +,



0 = (2a; cos(0) +0) — (2b; cos(0) +0) — £ cos(0) = 2a; — 2b; — 2.

al :_bl_i 2b1 =2(—b1—%)—%, 4]91 2—8,
bl = —2, a) = %

We find that a; = %, a» =0, by =-2, and b, = 0.

Thus the solution we seek is described by...
x1(t) = %+ cos5t— 2cos5/3 1+ 5 cos 10z,

x2(t) = £ cos5t+4 cos531— 1& cos10r.

We have a superposition of 2 natural oscillations with the frequencies ; = 5 and w> = 5,/3 and
forced oscillation with @ = 10. In each of the two natural oscillations the amplitude of motion of m
is twice that of m, while in the forced oscillation the amplitude of motion of m is four times that of
mi. Regarding direction of motion, in oscillation @ = 5 the masses are moving in the same direction,
while in the other two oscillations they are moving in opposite directions.



