7.5: Second-Order Systems and Mechanical Applications

Masses (n of them) connected to each other and connected to two walls by $n+1$ springs. Assume no friction, and that each mass m_{j} reacts to the spring(s) attached to it by the familiar formula
$F=m_{j} x_{j}^{\prime \prime}=-k x$. So, assuming the mass in question m_{j} is reacting to two springs (k_{j} and k_{j+1}), we
have: $F=m_{j} x_{j}^{\prime \prime}=-k_{j}\left(x_{j}-x_{j-1}\right)+k_{j+1}\left(x_{j+1}-x_{j}\right)$.
Case: $n=3$

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right), \\
& m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)+k_{3}\left(x_{3}-x_{2}\right), \\
& m_{3} x_{3}^{\prime \prime}=-k_{3}\left(x_{3}-x_{2}\right)+k_{4} x_{3} .
\end{aligned}
$$

Observe that the initial k_{1} and the final spring k_{n+1} only have one mass displacement effecting it (x_{1} and x_{n}, respectively).

We can put the displacement x_{j} of each mass m_{j} into a displacement vector: $\quad \mathbf{x}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$. Similarly with the masses, we have a mass matrix:

$$
\mathbf{M}=\left[\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right]
$$

For the spring constants, we have this stiffness matrix:

$$
\mathbf{K}=\left[\begin{array}{ccc}
-\left(k_{1}+k_{2}\right) & k_{2} & 0 \\
k_{2} & -\left(k_{2}+k_{3}\right) & k_{3} \\
0 & k_{3} & -\left(k_{3}+k_{4}\right)
\end{array}\right] .
$$

Using these mathematical objects, we can more elegantly represent the the above system as $\mathbf{M} \overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{K} \overrightarrow{\mathbf{x}}$. Since \mathbf{M} is invertible, we can calculate \mathbf{M}^{-1} and multiply both sides of the equation (on the left) to simplify our equation further to our familiar $\overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$, where $\mathbf{A}=\mathbf{M}^{-1} \mathbf{K}$.

Solution of Second-Order Homogeneous Systems: $\overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$

Consider solutions of the form $e^{r t}$, which we used for single equations. To solve for a system, however, we will need to make this into a vector. Multiplying by a generic constant vector \vec{v}, we have $\vec{v} e^{r t}$. Assuming a solution of this form, and plugging it back into our DEQ, we get:
$\mathbf{A} \vec{v} e^{r t}=\left(\vec{v} e^{r t}\right)^{\prime \prime}=r\left(\vec{v} e^{r t}\right)^{\prime}=r^{2} \vec{v} e^{r t}$.
Dividing by $e^{r t}$, we get $\mathbf{A} \vec{v}=r^{2} \vec{v}$. But this is the eigenvector/eigenvalue equation where \vec{v} is an eigenvector for \mathbf{A}, and $\lambda=r^{2}$ is the associated eigenvalue.

Typically, when systems of equations like these model mechanical systems, we have eigenvalues $\lambda_{j}=-\omega_{j}^{2}$ of \mathbf{A} which are less than or equal to zero (where each ω_{j} is a circular frequency). This
gives us $r_{j}= \pm \sqrt{-\omega_{j}^{2}}= \pm \omega_{j} i$. So, for the eigenpair λ_{j}, \vec{v}_{j} of \mathbf{A} we have: $\vec{v}_{j} e^{i \omega_{j} t}=\left(\cos \omega_{j} t+i \sin \omega_{j} t\right) \vec{v}_{j}$. And from the real and imaginary parts, we get: $\mathbf{x}_{j}(t)=\left(a_{j} \cos \omega_{j} t+b_{j} \sin \omega_{j} t\right) \vec{v}_{j}$.

Theorem: If the $n \times n$ matrix \mathbf{A} has n distinct nonpositive eigenvalues $-\omega_{1}^{2},-\omega_{2}^{2}, \ldots,-\omega_{n}^{2}$, with eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, then a general solution of $\overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{A} \overrightarrow{\mathbf{x}}$ is given by $\overrightarrow{\mathbf{x}}(t)=\sum_{j=1}^{n}\left(a_{j} \cos \omega_{j} t+b_{j} \sin \omega_{j} t\right) \vec{v}_{j}$, where a_{j} and b_{j} are arbitrary constants. In the case where $-\omega_{j}^{2}=0$, the corresponding part $\overrightarrow{\mathbf{x}}_{j}(t)$ of the general solution is $\left[\ldots+\left(a_{j}+b_{j} t\right) \vec{v}_{j}+\ldots\right]$.

We wish to convert the solution above to the form $\overrightarrow{\mathbf{x}}(t)=\sum_{j=1}^{n} c_{j} \cos \left(\omega_{j} t-\alpha_{j}\right) \vec{v}_{j}$, where α_{j} is the "phase shift" or "phase angle."

So, recall (or learn for the first time) that if we have: $A \cos \omega t+B \sin \omega t$.
and wish to alter it to be like: $C \cos (\omega t-\alpha)$, (where C turns out to be the amplitude of the vibration)
we let A and B be the legs of a right triangle. Then the hypotenus is: $C=\sqrt{A^{2}+B^{2}}$.

With angle α (opposite of B), recall we have: $\cos \alpha=\frac{A}{C}, \quad \sin \alpha=\frac{B}{C}$,
where $\alpha=\left\{\begin{array}{cr}\tan ^{-1} \frac{B}{A} & \text { if } A, B>0 \text { (1st quadrant), } \\ \pi+\tan ^{-1} \frac{B}{A} & \text { if } A<0 \text { (2nd/3rd quadrant), } \\ 2 \pi+\tan ^{-1} \frac{B}{A} & \text { if } A>0, B<0 \text { (4th quadrant). }\end{array}\right.$
Thus we transform into, $A \cos \omega t+B \sin \omega t=C\left(\frac{A}{C} \cos \omega t+\frac{B}{C} \sin \omega t\right)$

$$
=C(\cos \alpha \cos \omega t+\sin \alpha \sin \omega t) .
$$

Recall the Trigonometric Identity: $\cos x \cos y+\sin y \sin x=\cos (x-y)=\cos (y-x)$.
So we get: $C \cos (\omega t-\alpha)$, where C is the amplitude,
ω is the circular frequency in $\frac{\mathrm{rad}}{\mathrm{sec}}$, and α is the phase angle.
Period of Motion: $T=\frac{2 \pi}{\omega}$ sec. Frequency: $v=\frac{1}{T}=\frac{\omega}{2 \pi}$ in $\frac{\text { cycles }}{\sec }$.
So returning to $\overrightarrow{\mathbf{x}}(t)$, we have $\overrightarrow{\mathbf{x}}_{j}(t)=c_{j}\left(\cos \alpha_{j} \cos 5 t+\sin \alpha_{j} \sin 5 t\right) \vec{v}_{j}=c_{j} \cos \left(5 t-\alpha_{j}\right) \vec{v}_{j}$.
Superposition of Wave Frequecies ω_{1} and ω_{2} :

Time
Here is a video showing the kinds of movements involved in this section: https://www.youtube.com/watch?v=cu4TvUwk17g

Let $\mathbf{M} \overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{K} \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{F}}$ where $\overrightarrow{\mathbf{F}}=\left[F_{1}(t) F_{2}(t) \ldots F_{n}(t)\right]^{T}$ are the external forces acting on the masses ($m_{1}, m_{2}, \ldots, m_{n}$).

So, $\overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{A} \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{f}}$, where $\overrightarrow{\mathbf{f}}=\left[\frac{F_{1}(t)}{m_{1}} \frac{F_{2}(t)}{m_{2}} \ldots \frac{F_{n}(t)}{m_{2}}\right]^{T}$ is the external force vector per unit mass.
Often the external forces are periodic,
and we have $\overrightarrow{\mathbf{f}}(t)=\overrightarrow{\mathbf{F}}_{0} \cos \omega t$, where $\overrightarrow{\mathbf{F}}_{0}$ is some constant vector.
We obtain resonance when the external (forced) frequency ω is equal
to one of the system's internal frequencies $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\}$.
Undetermined coefficients suggests a trial solution of:
$\overrightarrow{\mathbf{x}}_{\text {trial }}(t)=\overrightarrow{\mathbf{c}} \cos \omega t$. (why not " $+\overrightarrow{\mathbf{b}} \sin \omega t^{\prime \prime}$??)
We solve for particular solution by plugging in this trial solution, and determining the coefficients: $\overrightarrow{\mathbf{c}}=\left[\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{n}\end{array}\right]$.

As with a single equation with forced oscillation, we have a periodic and transient solution $\overrightarrow{\mathbf{x}}(t)=\overrightarrow{\mathbf{x}}_{t r}(t)+\overrightarrow{\mathbf{x}}_{s p}(t)$ (see section 5.6). Given any damping, the transient solution eventually disappears leaving only the periodic solution (which is being induced by the external force).

Problem: \#7 Suppose a mass-and-spring system have the following stiffness matrix...

$$
\mathbf{K}=\left[\begin{array}{cc}
-\left(k_{1}+k_{2}\right) & k_{2} \\
k_{2} & -\left(k_{2}+k_{3}\right)
\end{array}\right]
$$

and has the following values for the mass and spring constants...

$$
m_{1}=m_{2}=1 ; \quad k_{1}=4, k_{2}=6, k_{3}=4 .
$$

Find the two natural frequencies of the system and describe its two natural modes of oscillation.

$$
\mathbf{M} \overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{K} \overrightarrow{\mathbf{x}} \quad \text { or } \quad \mathbf{x}^{\prime \prime}=\mathbf{M}^{-1} \mathbf{K} \overrightarrow{\mathbf{x}} .
$$

$$
\begin{aligned}
\mathbf{M}= & {\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } \\
& =\mathbf{M}^{-1}
\end{aligned}
$$

So, $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-(4+6) & 6 \\ 6 & -(6+4)\end{array}\right]=\left[\begin{array}{cc}-10 & 6 \\ 6 & -10\end{array}\right]$.

$$
\left|\begin{array}{cc}
-10-\lambda & 6 \\
6 & -10-\lambda
\end{array}\right|=(10-\lambda)^{2}-36=\lambda^{2}+20 \lambda+64=(\lambda+16)(\lambda+4) \text {. }
$$

Eigenvalues $\lambda_{1}=-4$ and $\lambda_{2}=-16$,
with associated eigenvectors $v_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ and $v_{2}=\left[\begin{array}{ll}1 & -1\end{array}\right]^{T}$.

Recall: $" \overrightarrow{\mathbf{x}}(t)=\sum_{j=1}^{n}\left(a_{j} \cos \omega_{j} t+b_{j} \sin \omega_{j} t\right) \vec{v}_{j} " \quad$ and \quad "Eigenvalues: $\lambda=-\omega_{i}^{2} "$

Therefore: $\mathbf{x}(t)=\left(a_{1} \cos 2 t+b_{1} \sin 2 t\right)\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left(a_{2} \cos 4 t+b_{2} \sin 4 t\right)\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\begin{aligned}
& x_{1}(t)=a_{1} \cos 2 t+b_{1} \sin 2 t+a_{2} \cos 4 t+b_{2} \sin 4 t \\
& x_{2}(t)=a_{1} \cos 2 t+b_{1} \sin 2 t-a_{2} \cos 4 t-b_{2} \sin 4 t
\end{aligned}
$$

"Describe its two natural modes of oscillation."

The natural frequencies are $\omega_{1}=2$ and $\omega_{2}=4$. In the natural mode with frequency 2 , the two masses m_{1} and m_{2} move in the same direction with equal amplitudes of oscillation. At frequencies 4 , they move in opposite directions with equal amplitudes.

Problem: \#10 The mass-and-spring system of the problem \#7 (above) is set in motion from rest [$\left.x_{1}^{\prime}(0)=x_{2}^{\prime}(0)=0\right]$, at its equilibrium position $\left[x_{1}(0)=x_{2}(0)=0\right]$, with external forces $F_{1}(t)=30 \cos t$ and $F_{2}(t)=60 \cos t$ acting on the masses m_{1} and m_{2}, respectively. Find the resulting motion of the system and describe it as a superposition of oscillations.
Recall: $\overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{A} \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{f}}, m_{1}=1, m_{2}=1$, and $\mathbf{A}=\left[\begin{array}{cc}-10 & 6 \\ 6 & -10\end{array}\right]$.

Observe that $\overrightarrow{\mathbf{f}}=\mathbf{M}^{-\mathbf{1}} \mathbf{F}=\mathbf{F}=[30 \cos t, 60 \cos t]($ since $\mathbf{M}=\mathbf{I})$.

So, forming the nonhomogeneous DEQ $\overrightarrow{\mathbf{x}}^{\prime \prime}=\mathbf{A} \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{f}}$, we have:

$$
\begin{align*}
& x_{1}^{\prime \prime}=-10 x_{1}+6 x_{2}+30 \cos t \\
& x_{2}^{\prime \prime}=6 x_{1}-10 x_{2}+60 \cos t \tag{*}
\end{align*}
$$

Recall complementary solution from prob. 7:

$$
x_{c, 1}(t)=a_{1} \cos 2 t+a_{2} \sin 2 t+b_{1} \cos 4 t+b_{2} \sin 4 t
$$

Recall from the review that the "trial solution is: $\vec{x}_{t r i a l}(t)=\vec{c} \cos \omega t$," where we can label the components $\vec{c}:=\left[\begin{array}{ll}d_{1} & d_{2}\end{array}\right]$.

Taking derivatives of the of the trial solution $x_{1}=d_{1} \cos t, x_{2}=d_{2} \cos t$ in order to substitute into the system ($*$):
$x_{1}^{\prime}=-d_{1} \sin t, \quad x_{2}^{\prime}=-d_{2} \sin t, \quad x_{1}^{\prime \prime}=-d_{1} \cos t, \quad x_{2}^{\prime \prime}=-d_{2} \cos t$.
$\left(-d_{1} \cos t\right)=-10\left(d_{1} \cos t\right)+6\left(d_{2} \cos t\right)+30 \cos t$,
$\left(-d_{2} \cos t\right)=6\left(d_{1} \cos t\right)-10\left(d_{2} \cos t\right)+60 \cos t$.

Dividing by $\cos t$:

$$
\begin{aligned}
& -d_{1}=-10 d_{1}+6 d_{2}+30, \\
& -d_{2}=6 d_{1}-10 d_{2}+60 . \quad \text { (two equations in two unknowns) } \\
& 9 d_{1}=6 d_{2}+30,9 d_{2}=6 d_{1}+60 ; \quad d_{1}=\frac{2}{3} d_{2}+\frac{10}{3}, d_{2}=\frac{2}{3}\left(\frac{2}{3} d_{2}+\frac{10}{3}\right)+\frac{20}{3} \\
& \frac{5}{9} d_{2}=\frac{80}{9}, d_{2}=16, \quad d_{1}=\frac{2}{3} \cdot 16+\frac{10}{3}=14 .
\end{aligned}
$$

So a general solution is given by:

$$
\begin{aligned}
& x_{1}(t)=a_{1} \cos 2 t+a_{2} \sin 2 t+b_{1} \cos 4 t+b_{2} \sin 4 t+14 \cos t \\
& x_{2}(t)=a_{1} \cos 2 t+a_{2} \sin 2 t-b_{1} \cos 4 t-b_{2} \sin 4 t+16 \cos t
\end{aligned}
$$

Initial conditions: $x_{1}(0)=x_{2}(0)=0$

$$
0=a_{1}+b_{1}+14, \quad 0=a_{1}-b_{1}+16
$$

So: $\quad a_{1}=-\left(b_{1}+14\right), \quad 0=-\left(b_{1}+14\right)-b_{1}+16$,

$$
2 b_{1}=2, b_{1}=1 ; \quad a_{1}=-(1+14)=-15 .
$$

Now taking the derivative for the initial condition: $x_{1}^{\prime}(0)=x_{2}^{\prime}(0)=0$:

$$
\begin{aligned}
& x_{1}^{\prime}=-a_{1} \sin 2 t+a_{2} \cos 2 t-b_{1} \sin 4 t+b_{2} \cos 4 t-14 \sin t \\
& x_{2}^{\prime}=-a_{1} \sin 2 t+a_{2} \cos 2 t+b_{1} \sin 4 t-b_{2} \cos 4 t-16 \sin t \\
& 0=a_{2}+b_{2}, \quad 0=a_{2}-b_{2} \\
& a_{2}=b_{2}, \quad b_{2}=-\left(b_{2}\right) ; \quad b_{2}=0, \quad a_{2}=0
\end{aligned}
$$

The resulting particular solution from $(* *)$ is:

$$
\begin{aligned}
& x_{1}(t)=\cos 4 t-15 \cos 2 t+14 \cos t \\
& x_{2}(t)=-\cos 4 t-15 \cos 2 t+16 \cos t
\end{aligned}
$$

"Describe it as a superposition of oscillations at three different frequencies."

We have a superposition of three oscillations, in which the two masses:

- Move in opposite directions with frequency $\omega_{3}=4$ and equal amplitudes.
- Move in the same direction with frequency $\omega_{2}=2$ and equal amplitudes;
- Move in the same direction with frequency $\omega_{1}=1$ and with the amplitude of motion of m_{2} being 16 , and m_{1} being 14 .

Problem: \#11a Consider a mass-and-spring system containing two masses $m_{1}=1$ and $m_{2}=1$ whose displacement functions $x(t)$ and $y(t)$ satisfy the differential equations: $\quad x^{\prime \prime}=-40 x+8 y, \quad y^{\prime \prime}=12 x-60 y$.
What are the natural frequencies, and in what directions and amplitudes do the masses move?

$$
\mathbf{A}=\left[\begin{array}{cc}
-40 & 8 \\
12 & -60
\end{array}\right]
$$

Determining the eigenvalues:

$$
\begin{aligned}
& \left.\begin{array}{cc}
-40-\lambda & 8 \\
12 & -60-\lambda
\end{array} \right\rvert\, \Rightarrow(40+\lambda)(60+\lambda)-96=\lambda^{2}+100 \lambda+2304 \\
& =(\lambda+64)(\lambda+36) . \\
& \text { So: } \lambda_{1,2}=-36,-64 .
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{1}= & -36:\left[\begin{array}{cc}
-40+36 & 8 \\
12 & -60+36
\end{array}\right]=\left[\begin{array}{cc}
-4 & 8 \\
12 & -24
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
-4 & 8 \\
0 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right], \quad y=s, \text { and } x=2 s, \text { so } \vec{v}_{1}=\left[\begin{array}{ll}
2 & 1
\end{array}\right]^{T}, \text { where } s=1 .
\end{aligned}
$$

Similarly for $\lambda_{2}=-64: \vec{v}_{2}=\left[\begin{array}{ll}1 & -3\end{array}\right]^{T}$.

So we have the general solution: $\vec{x}=\left(a_{1} \cos 6 t+b_{1} \sin 6 t\right)\left[\begin{array}{l}2 \\ 1\end{array}\right]+\left(a_{2} \cos 8 t+b_{2} \sin 8 t\right)\left[\begin{array}{c}1 \\ -3\end{array}\right]$
OR

$$
\begin{aligned}
& x(t)=2 a_{1} \cos 6 t+2 b_{1} \sin 6 t+a_{2} \cos 8 t+b_{2} \sin 8 t, \\
& y(t)=a_{1} \cos 6 t+b_{1} \sin 6 t-3 a_{2} \cos 8 t-3 b_{2} \sin 8 t .
\end{aligned}
$$

What are the natural frequencies, and in what directions and amplitudes do the masses move?

Problem: $\approx \# 11 b$ Assume that the two masses above start in motion with the initial conditions: $x(0)=19, x^{\prime}(0)=12$, and $y(0)=3, y^{\prime}(0)=6$, with no external force. Describe the resulting motion as a superposition of oscillations at two different frequencies.

Applying the first set of initial conditions:
$20=2 a_{1} \cos 0+2 b_{1} \sin 0+a_{2} \cos 0+b_{2} \sin 0$,
$3=a_{1} \cos 0+b_{1} \sin 0-3 a_{2} \cos 0-3 b_{2} \sin 0$.

Simplifying:

$20=2 a_{1}+a_{2}, \quad 3=a_{1}-3 a_{2}$.
Solving two equations in two unknowns:
$a_{1}=3+3 a_{2}, \quad 20=2\left(3+3 a_{2}\right)+a_{2}=6+7 a_{2}, \quad a_{2}=2$
$a_{1}=3+6=9$
$x^{\prime}(t)=-12 a_{1} \sin 6 t+12 b_{1} \cos 6 t-8 a_{2} \sin 8 t+8 b_{2} \cos 8 t$,
$y^{\prime}(t)=-6 a_{1} \sin 6 t+6 b_{1} \cos 6 t+24 a_{2} \sin 8 t-24 b_{2} \cos 8 t$.

Applying the derivative initial conditions:
$12=-12 a_{1} \sin 0+12 b_{1} \cos 0-8 a_{2} \sin 0+8 b_{2} \cos 0$,
$6=-6 a_{1} \sin 0+6 b_{1} \cos 0+24 a_{2} \sin 0-24 b_{2} \cos 0$.

Simplifying:

$12=12 b_{1}+8 b_{2}$,
$6=6 b_{1}-24 b_{2}$.
Solving two equations in two unknowns:
$b_{1}=1-4 b_{2}, \quad 12=12\left(1-4 b_{2}\right)+8 b_{2}=12-40 b_{2}, \quad b_{2}=0$,
$b_{1}=1$.

So: $\quad x(t)=18 \cos 6 t+2 \sin 6 t+2 \cos 8 t$,

$$
y(t)=9 \cos 6 t+\sin 6 t-6 \cos 8 t
$$

Describe the resulting motion as a superposition of oscillations at three different frequencies.

Problem: \#15. \quad Suppose that $m_{1}=2, m_{2}=\frac{1}{2}, k_{1}=75, k_{2}=25, \overrightarrow{\mathbf{F}}_{0}=\left[\begin{array}{ll}0 & 100\end{array}\right]$, and $\omega=10$ (all in $m k s$ units) in the forced mass-and-spring system shown. Find the solution of the system $\mathbf{M} \vec{x}^{\prime \prime}=\mathbf{K} \vec{x}+\mathbf{F}$ that satisfies the initial conditions $\vec{x}(0)=\vec{x}^{\prime}(0)=\overrightarrow{0}$.

Recall: For the spring constants, we have this stiffness matrix:

$$
\mathbf{K}=\left[\begin{array}{cc}
-\left(k_{1}+k_{2}\right) & k_{2} \\
k_{2} & -k_{2}
\end{array}\right]=\left[\begin{array}{cc}
-100 & 25 \\
25 & -25
\end{array}\right]
$$

Mass matrix: $\quad \mathbf{M}=\left[\begin{array}{cc}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right], \quad \mathbf{M}^{-1}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 2\end{array}\right]$

First we need the general solution of the homogeneous system $\vec{x}^{\prime \prime}=\mathbf{M}^{-1} \mathbf{K} \vec{x}$, with
$\mathbf{M}^{-1} \mathbf{K}=\mathbf{A}=\left[\begin{array}{cc}-50 & \frac{25}{2} \\ 50 & -50\end{array}\right]$.

The eigenvalues of \mathbf{A} are $\lambda_{1}=-25$ and $\lambda_{2}=-75$, so the natural frequencies of the system are $\omega_{1}=5$ and $\omega_{2}=5 \sqrt{3}$. Associated eigenvectors are $\vec{v}_{1}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ and $\vec{v}_{2}=\left[\begin{array}{ll}1 & -2\end{array}\right]^{T}$.

So the complementary solution $\vec{x}_{c}(t)$ is given by...

$$
\begin{aligned}
& x_{1}(t)=\left(a_{1} \cos 5 t+b_{1} \sin 5 t\right)+\left(a_{2} \cos 5 \sqrt{3} t+b_{2} \sin 5 \sqrt{3} t\right), \\
& x_{2}(t)=\left(2 a_{1} \cos 5 t+2 b_{1} \sin 5 t\right)-\left(2 a_{2} \cos 5 \sqrt{3} t+2 b_{2} \sin 5 \sqrt{3} t\right) .
\end{aligned}
$$

Trial solution to $\overrightarrow{\mathbf{F}}_{0}=\left[\begin{array}{ll}0 & 100\end{array}\right]^{T}$, and $\omega=10$ " is...

Recall that: $\vec{x}^{\prime \prime}=\mathbf{A} \vec{x}+\overrightarrow{\mathbf{f}}=\mathbf{M}^{-1} \mathbf{K} \vec{x}+\mathbf{M}^{-1} \overrightarrow{\mathbf{F}}_{0} \cos \omega t=\mathbf{M}^{-1} \mathbf{K} \vec{x}+\left[\begin{array}{ll}0 & 200\end{array}\right]^{T} \cos 10 t$ (note from image above that $\overrightarrow{\mathbf{F}}_{0}$ is only directly affecting $m_{2} \ldots$).

So trial solution: $\vec{x}_{\text {trial }}(t)=\left[\begin{array}{ll}c_{1} & c_{2}\end{array}\right]^{T} \cos 10 t$, and we find...

$$
\vec{x}_{\text {trial }}^{\prime}=-10 \vec{c} \sin 10 t, \quad \vec{x}_{\text {trial }}^{\prime \prime}=-100 \vec{c} \cos 10 t .
$$

$\vec{x}_{\text {trial }}^{\prime \prime}=\mathbf{A} \vec{x}_{\text {trial }}+\left[\begin{array}{ll}0 & 200\end{array}\right]^{T} \cos 10 t$

Substituting...

$$
\left.\left.\begin{array}{l}
-100\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \cos 10 t=\left[\begin{array}{cc}
-50 & \frac{25}{2} \\
50 & -50
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \cos 10 t+\left[\begin{array}{c}
0 \\
200
\end{array}\right] \cos 10 t, \\
\Rightarrow \\
-100 c_{2}
\end{array}\right]=\left[\begin{array}{c}
-100 c_{1} \\
-50 c_{1}+\frac{25}{2} c_{2} \\
50 c_{1}-50 c_{2}+200
\end{array}\right], \quad \text { (two equations in two unknowns) }\right)=\begin{aligned}
& -50 c_{1}=\frac{25}{2} c_{2}, \quad c_{1}=-\frac{1}{4} c_{2} \\
& -50 c_{2}=50 c_{1}+200=50\left(-\frac{1}{4} c_{2}\right)+200 \\
& c_{2}=\frac{1}{4} c_{2}-4, \quad \frac{3}{4} c_{2}=-4, \quad c_{2}=-\frac{16}{3} \quad \text { and } c_{1}=\frac{4}{3} .
\end{aligned}
$$

So a particular solution $\vec{x}_{s p}(t)$ is described by...

$$
x_{s p_{1}}(t)=\frac{4}{3} \cos 10 t, \quad x_{s p_{2}}(t)=-\frac{16}{3} \cos 10 t
$$

General Solution:

$$
\begin{aligned}
& \vec{x}(t)=\vec{x}_{c}(t)+\vec{x}_{s p}(t) \\
& x_{1}(t)=\left(a_{1} \cos 5 t+a_{2} \sin 5 t\right)+\left(b_{1} \cos 5 \sqrt{3} t+b_{2} \sin 5 \sqrt{3} t\right)+\frac{4}{3} \cos 10 t \\
& x_{2}(t)=\left(2 a_{1} \cos 5 t+2 a_{2} \sin 5 t\right)-\left(2 b_{1} \cos 5 \sqrt{3} t+2 b_{2} \sin 5 \sqrt{3} t\right)-\frac{8}{3} \cos 10 t
\end{aligned}
$$

" Initial conditions $\vec{x}(0)=\vec{x}^{\prime}(0)=\overrightarrow{0} "$
Finally, when we impose the initial conditions on the solution $\vec{x}(t)=\vec{x}_{c}(t)+\vec{x}_{s p}(t)$

$$
0=\left(a_{1} \cos (0)+0\right)+\left(b_{1} \cos (0)+0\right)+\frac{2}{3} \cos (0)=a_{1}+b_{1}+\frac{4}{3},
$$

$$
0=\left(2 a_{1} \cos (0)+0\right)-\left(2 b_{1} \cos (0)+0\right)-\frac{8}{3} \cos (0)=2 a_{1}-2 b_{1}-\frac{16}{3} .
$$

$$
\begin{aligned}
& a_{1}=-b_{1}-\frac{4}{3}, \quad 2 b_{1}=2\left(-b_{1}-\frac{4}{3}\right)-\frac{16}{3}, \quad 4 b_{1}=-8, \\
& b_{1}=-2, \quad a_{1}=\frac{2}{3} .
\end{aligned}
$$

We find that $a_{1}=\frac{2}{3}, a_{2}=0, b_{1}=-2$, and $b_{2}=0$.
Thus the solution we seek is described by...

$$
\begin{aligned}
& x_{1}(t)=\frac{2}{3} \cos 5 t-2 \cos 5 \sqrt{3} t+\frac{4}{3} \cos 10 t \\
& x_{2}(t)=\frac{4}{3} \cos 5 t+4 \cos 5 \sqrt{3} t-\frac{16}{3} \cos 10 t .
\end{aligned}
$$

We have a superposition of 2 natural oscillations with the frequencies $\omega_{1}=5$ and $\omega_{2}=5 \sqrt{3}$ and forced oscillation with $\omega=10$. In each of the two natural oscillations the amplitude of motion of m_{2} is twice that of m_{1}, while in the forced oscillation the amplitude of motion of m_{2} is four times that of m_{1}. Regarding direction of motion, in oscillation $\omega=5$ the masses are moving in the same direction, while in the other two oscillations they are moving in opposite directions.

