MATH 2243: Linear Algebra \& Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu
Discussion Session Website: math.umn.edu/~moreyjc

7.6: Multiple Eigenvalue Solutions: Review

To find the complete general solution to $\vec{x}^{\prime}=\mathbf{A} \vec{x}$, you need n linearly independent vectors from A's eigenvalues. But what if one of your eigenvalues λ, has multiplicity k, but only has $k-1$ eigenvectors (so defect $d=1$) $\left\{\vec{u}_{1}, \ldots, \vec{u}_{k-1}\right\}$. What to do?!?

Algorithm for Eigenvalue of Defect $d=1$, Multiplicity k

(for example, $\mathbf{A}^{2 \times 2}$, with $\lambda=5$, multiplicity 2 , but only one eigenvector) - Compute: $(\mathbf{A}-\lambda \mathbf{I})^{2}$.

- Choose a nonzero \vec{v}_{2} so that: $(\mathbf{A}-\lambda \mathbf{I})^{2} \vec{v}_{2}=\overrightarrow{0}$.
often in the book $(\mathbf{A}-\lambda \mathbf{I})^{2}=\mathbf{0}$, is the zero matrix. Thus, any nonzero vector \vec{v}_{2} will work, so it's traditional to choose a standard vector $\vec{v}_{2}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ or $\vec{v}_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$.)
- Next, calculate $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}$ and label this as \vec{v}_{1}.
- If $\vec{v}_{1}=\overrightarrow{0}$, choose a different nonzero \vec{v}_{2} above, and recalculate until your \vec{v}_{1} is nonzero.
- Then, form the k independent solutions:
$\vec{u}_{1} e^{\lambda t}, \ldots, \vec{u}_{k-1} e^{\lambda t}$ and $\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t}$. (the last one is the "generalized" eigenvector) Including the rest of the general solution (for the other eigenvalues): $c_{1} \vec{w}_{1} e^{\lambda_{1} t}+\ldots+c_{n-k} \vec{w}_{n-k} e^{\lambda_{n-k} t}$, we end up with:

$$
x(t)=c_{1} \vec{w}_{1} e^{\lambda_{1} t}+\ldots+c_{n-k} \vec{w}_{n-k} e^{\lambda_{n-k} t}+\left[c_{n-k+1} \vec{u}_{1}+\ldots+c_{n-1} \vec{u}_{k-1}+c_{n}\left(\vec{v}_{1} t+\vec{v}_{2}\right)\right] e^{\lambda t} .
$$

Most common case: λ with $k=2$

- Form the two independent solutions:

$$
\vec{u}_{1} e^{\lambda t} \text { and }\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t}
$$

So, from the eigenvalue λ, the contribution to the solution is: $c_{1} \vec{u}_{1} e^{\lambda t}+c_{2}\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t}$.

General Algorithm for Eigenvalue of Defect d, Multiplicity k

(for example, $\mathbf{A}^{3 \times 3}$, with $\lambda=5$, multiplicity 3 , but only one eigenvector, so $d=2$)

- Compute: $(\mathbf{A}-\lambda \mathbf{I})^{d+1}$.
-Choose a nonzero \vec{u}_{1} so that: $(\mathbf{A}-\lambda \mathbf{I})^{d+1} \vec{u}_{1}=\overrightarrow{0}$.
- Successively multiply \vec{u}_{1} by powers of $(\mathbf{A}-\lambda \mathbf{I})$ until the zero vector is obtained.

When we first form $(\mathbf{A}-\lambda \mathbf{I})^{p} \vec{u}_{1}=0$, if the power p is equal to $d+1$, then you now have vectors $\vec{u}_{1}, \ldots, \vec{u}_{d+1}$ such that:

$$
\begin{aligned}
& (\mathbf{A}-\lambda \mathbf{I}) \vec{u}_{1}=\vec{u}_{2} \neq \overrightarrow{0} \\
& \quad \vdots \\
& (\mathbf{A}-\lambda \mathbf{I}) \vec{u}_{d}=\vec{u}_{d+1} \neq \overrightarrow{0}, \text { and }(\mathbf{A}-\lambda \mathbf{I}) \vec{u}_{d+1}=\overrightarrow{0}
\end{aligned}
$$

These k vectors are called your generalized eigenvectors.

- If $p<d+1$, then choose a different nonzero \vec{u}_{1} above until you find $d+1$ nonzero vectors.
- Next, form the $d+1$ independent solutions from:

$$
\begin{aligned}
& x_{1}(t)=\vec{u}_{d+1} e^{\lambda t} \\
& x_{2}(t)=\left(\vec{u}_{d+1} t+\vec{u}_{d}\right) e^{\lambda t} .
\end{aligned}
$$

$$
x_{d+1}(t)=\left(\vec{u}_{d+1} \frac{t^{d}}{d!}+\ldots+\vec{u}_{3} \frac{t^{2}}{2!}+\vec{u}_{2} t+\vec{u}_{1}\right) e^{\lambda t} .
$$

Observe that if our defect has $d+1<k$, the above algorithm does not produce k linearly independent eigenvectors/solutions. However, if $d+1<k$, this means that we have additional independent vectors found through the normal process. For example, if we are working with a 4×4 matrix with one eigenvalue λ, and find 2 ordinary vectors \vec{v}_{1}, \vec{v}_{2}, we have a defect of 2 , so $d+1=3<k=4$. However, we have the 2 ordinary vectors which are linearly independent, in addition to the 3 vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ we find above using our new process. So obviously all 5 of these cannot be linearly independent. In fact, we will also find that \vec{u}_{1} is a linear combination of \vec{v}_{1}, \vec{v}_{2}. So, the way we find 4 linearly independent vectors here is to find a linear combination of \vec{v}_{1}, \vec{v}_{2} (which we will call \vec{u}_{4}) that is linearly independent from \vec{u}_{1}. Then, our basis becomes

$$
\left\{\vec{u}_{1} e^{\lambda t},\left(\vec{u}_{2} t+\vec{u}_{1}\right) e^{\lambda t},\left(\vec{u}_{3} t^{2}+\vec{u}_{2} t+\vec{u}_{1}\right) e^{\lambda t}, \vec{u}_{4} e^{\lambda t}\right\} .
$$

Including the rest of the general solution (for the other eigenvalues): $c_{1} \vec{w}_{1} e^{\lambda_{1} t}+\ldots+c_{n-k} \vec{w}_{n-k} e^{\lambda_{n-k} t}$, we end up with: $x(t)=c_{1} \vec{w}_{1} e^{\lambda_{1} t}+\ldots+c_{n-k} \vec{w}_{n-k} e^{\lambda_{n-k} t}$

$$
\begin{aligned}
& +\left[c_{n-k+1} \vec{u}_{d+1}+c_{n-k+2}\left(\vec{u}_{d+1} t+\vec{u}_{d}\right)+\ldots+c_{n-k+d-2}\left(\vec{u}_{d+1} \frac{t^{d}}{d!}+\ldots+\vec{u}_{3} \frac{t^{2}}{2!}+\vec{u}_{2} t+\vec{u}_{1}\right)\right] e^{\lambda t} \\
& +\left[c_{n-k+d-1} \vec{u}_{d+2}+\ldots+c_{n} \vec{u}_{k}\right] e^{\lambda t} .
\end{aligned}
$$

Problem: \#6 \quad Find a general solution to the system: $\vec{x}^{\prime}=\left[\begin{array}{cc}1 & -4 \\ 4 & 9\end{array}\right] \vec{x}$.

$$
\left.\begin{array}{cc}
1-\lambda & -4 \\
4 & 9-\lambda
\end{array} \right\rvert\,=(1-\lambda)(9-\lambda)+16=\lambda^{2}-10 \lambda+25=(\lambda-5)^{2} .
$$

$\lambda_{1}=\lambda_{2}=5$
$\left[\begin{array}{cc}1-5 & -4 \\ 4 & 9-5\end{array}\right]=\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right] \Rightarrow\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], \quad y=b$ and $x=-b$.
$\vec{u}_{1}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$

Only one eigenvector? \quad Defective! $\quad d=1$.
"Compute: $(\mathbf{A}-\lambda \mathbf{I})^{2}$."
$(\mathbf{A}-\lambda \mathbf{I})^{2}=\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right]^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
"Choose a nonzero vector \vec{v}_{2} so that: $(\mathbf{A}-\lambda \mathbf{I})^{2} \vec{v}_{2}=\overrightarrow{0} . "$
$(\mathbf{A}-\lambda \mathbf{I})^{2} \vec{v}_{2}=\overrightarrow{0}$ is therefore satisfied by any choice of \vec{v}_{2}.
Generic nonzero choice in these situations: $\vec{v}_{2}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$.
"Calculate $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}$ and label this $\vec{v}_{1} . "$
$(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}=\left[\begin{array}{cc}-4 & -4 \\ 4 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}-4 \\ 4\end{array}\right]=: \vec{v}_{1} \quad$ (yay, nonzero!)
"Form the two independent solutions: $\vec{x}_{1}(t)=\vec{u}_{1} e^{\lambda t}$ and $\vec{x}_{2}(t)=\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t}$."
So, $\vec{x}_{1}(t)=\vec{u}_{1} e^{5 t}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{5 t}$.

$$
\vec{x}_{2}(t)=\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{5 t}=\left(\left[\begin{array}{c}
-4 \\
4
\end{array}\right] t+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) e^{5 t}=\left[\begin{array}{c}
-4 t+1 \\
4 t
\end{array}\right] e^{5 t} .
$$

Gen. solution: $\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)=c_{1}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}-4 t+1 \\ 4 t\end{array}\right] e^{5 t}$

$$
=\left[\begin{array}{c}
-4 c_{1}+(-4 t+1) c_{2} \\
4 c_{1}+4 t c_{2}
\end{array}\right] e^{5 t} .
$$

Problem: \#16 \quad Find a general solution to the system: $\vec{x}^{\prime}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & -2 & -3 \\ 2 & 3 & 4\end{array}\right] \vec{x}$.

$|\mathbf{A}-\lambda \mathbf{I}|=0$

$\left.\begin{array}{ccc}1-\lambda & 0 & 0 \\ -2 & -2-\lambda & -3 \\ 2 & 3 & 4-\lambda\end{array} \right\rvert\,=(1-\lambda)((-2-\lambda)(4-\lambda)+9)=(1-\lambda)\left(\lambda^{2}-2 \lambda+1\right)$
12/10/2020 Jodin Morey

$$
=-(\lambda-1)^{3}=0 . \quad \text { OR }
$$

$$
\begin{aligned}
& \begin{array}{ccc}
1-\lambda & 0 & 0 \\
-2 & -2-\lambda & -3 \\
2 & 3 & 4-\lambda
\end{array}\left|=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1-\lambda & 1-\lambda \\
2 & 3 & 4-\lambda
\end{array}\right|=\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
2 & 3 & 1-\lambda
\end{array}\right|\right. \\
& \quad=(\lambda-1)^{3}=0 .
\end{aligned}
$$

So: $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$.

Now: $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}=\overrightarrow{0}$.
Reductions: $\left[\begin{array}{ccc}0 & 0 & 0 \\ -2 & -3 & -3 \\ 2 & 3 & 3\end{array}\right] \Rightarrow\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & \frac{3}{2} & \frac{3}{2}\end{array}\right], \quad z=c, y=b, x=-\frac{3}{2} b-\frac{3}{2} c$
So, $\left\langle-\frac{3}{2} b-\frac{3}{2} c, b, c\right\rangle=\langle 3,-2,0\rangle+\langle 3,0,-2\rangle$, where $b=c=-2$.
$\overrightarrow{u_{1}}=\langle 3,-2,0\rangle$, and $\overrightarrow{u_{2}}=\langle 3,0,-2\rangle$.

Only two eigenvectors? Defective! $\quad d=1$.
$(\mathbf{A}-\lambda \mathbf{I})^{2}=\left[\begin{array}{ccc}0 & 0 & 0 \\ -2 & -3 & -3 \\ 2 & 3 & 3\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 0 \\ -2 & -3 & -3 \\ 2 & 3 & 3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
"Choose a nonzero vector \vec{v}_{2} so that: $(\mathbf{A}-\lambda \mathbf{I})^{2} \vec{v}_{2}=\overrightarrow{0}$."
Start with generic: $\vec{v}_{2}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$.

Calculate $\vec{v}_{1}:=(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}$.

$$
\vec{v}_{1}:=(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-2 & -3 & -3 \\
2 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right] . \quad \text { (yay, nonzero!) }
$$

Notice that: $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{1}=(\mathbf{A}-\lambda \mathbf{I})\left((\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}\right)=(\mathbf{A}-\lambda \mathbf{I})^{2} \vec{v}_{2}=\overrightarrow{0}$.
So, $\vec{v}_{1}=\langle 0,-2,2\rangle$ is an ordinary eigenvector associated with λ.
Also, recall: $\overrightarrow{u_{1}}=\langle 3,-2,0\rangle$ and $\overrightarrow{u_{2}}=\langle 3,0,-2\rangle$ are also eigenvectors associated with λ.
So, we might mistakenly think that $\vec{x}(t)=e^{t}\left[c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{v}_{1}\right]$ is our general solution.
However, \vec{v}_{1} is a linear combination of $\vec{u}_{1}=\langle 3,-2,0\rangle$ and $\overrightarrow{u_{2}}=\langle 3,0,-2\rangle$, namely:
$\vec{u}_{1}-\overrightarrow{u_{2}}=\vec{v}_{1}$.
So, $\vec{v}_{1} e^{t}$ is a linear combination of the independent solutions $\vec{u}_{1} e^{t}$ and $\vec{u}_{2} e^{t}$ (and therefore dependent). So, we must instead use the prescribed $\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{t}$ as the desired third independent solution.

The corresponding general solution is described by
$\vec{x}(t)=e^{t}\left[c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3}\left(\vec{v}_{1} t+\vec{v}_{2}\right)\right]$

OR

$$
\begin{aligned}
& \overrightarrow{x_{1}}(t)=e^{t}\left(3 c_{1}+3 c_{2}+c_{3}\right) \\
& \overrightarrow{x_{2}}(t)=e^{t}\left(-2 c_{1}-2 c_{3} t\right) \\
& \overrightarrow{x_{3}}(t)=e^{t}\left(-2 c_{2}+2 c_{3} t\right) .
\end{aligned}
$$

Problem - Find a general solution to the system: $\vec{x}^{\prime}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 2 & -3 & 1 \\ 2 & -2 & 1 & -3\end{array}\right] \vec{x}$, where $\lambda \in\{0,-2,-2,-2\}$, and the eigenvector associated with $\lambda_{1}=0$ is $\vec{u}_{1}=\left[\begin{array}{cccc}1 & 1 & 0 & 0\end{array}\right]^{T .}$

$$
\mathbf{A}-\lambda_{2} \mathbf{I}=\mathbf{A}+2 \mathbf{I}=0
$$

$\left[\begin{array}{cccc}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & 2 & -1 & 1 \\ 2 & -2 & 1 & -1\end{array}\right] \stackrel{R_{4}+R_{3} \operatorname{and} R_{3}+R_{1}}{\Rightarrow}\left[\begin{array}{llll}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow\left[\begin{array}{llll}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1\end{array}\right]$,
$x_{4}=s, \quad x_{3}=t, \quad 2 x_{2}=-s, \quad 2 x_{1}=-t$.
$\Rightarrow \quad \vec{x}=\left\langle-\frac{1}{2} t,-\frac{1}{2} s, t, s\right\rangle=\langle 1,0,-2,0\rangle+\langle 0,1,0,-2\rangle$, when $t, s=-2$.
So: $\vec{u}_{2}=\langle 1,0,-2,0\rangle$ and $\vec{u}_{3}=\langle 0,1,0,-2\rangle$. Defect $d=1$.
$(\mathbf{A}-\lambda \mathbf{I})^{2}=\left[\begin{array}{cccc}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & 2 & -1 & 1 \\ 2 & -2 & 1 & -1\end{array}\right]\left[\begin{array}{cccc}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & 2 & -1 & 1 \\ 2 & -2 & 1 & -1\end{array}\right]=\left[\begin{array}{llll}2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
"Choose a nonzero vector \vec{v}_{2} so that: $(\mathbf{A}-\lambda \mathbf{I})^{2} \vec{v}_{2}=\overrightarrow{0}$."
Start with generic: $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}$.
$(\mathbf{A}-\lambda \mathbf{I})^{2}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\left[\begin{array}{llll}2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 0 \\ 0\end{array}\right] \neq 0$, so we see this doesn't work.

But looking at $(\mathbf{A}-\lambda \mathbf{I})^{2}$, and making a more informed choice, we choose $\left[\begin{array}{llll}1 & 0 & -2 & 0\end{array}\right]^{T}$. And indeed:
$(\mathbf{A}-\lambda \mathbf{I})^{2}\left[\begin{array}{lll}1 & 0 & -2\end{array} 0^{T}=\left[\begin{array}{llll}2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right.$.

However, our next task is to determine nonzero $\vec{v}_{1}:=(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}$, but observe that
$\left(\begin{array}{lll}\mathbf{A}-\lambda \mathbf{I}\end{array}\right)\left[\begin{array}{lll}1 & 0 & -2\end{array} 0^{T}=\left[\begin{array}{cccc}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & 2 & -1 & 1 \\ 2 & -2 & 1 & -1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right.$. But we need this to be nonzero, so apparently we must choose a different $\stackrel{\rightharpoonup}{v}_{2}$ vector above. By looking at $(\mathbf{A}-\lambda \mathbf{I})^{2}$ again, and making another informed choice, we choose $\vec{v}_{2}=\left[\begin{array}{llll}0 & 0 & 1 & -1\end{array}\right]^{T}$. And notice that
$(\mathbf{A}-\lambda \mathbf{I})^{2}\left[\begin{array}{llll}0 & 0 & 1 & -1\end{array}\right]^{T}=\left[\begin{array}{llll}2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$. So that is good. But what about
$\vec{v}_{1}:=(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2} ?$
$\vec{v}_{1}:=(\mathbf{A}-\lambda \mathbf{I}) \vec{v}_{2}=\left[\begin{array}{cccc}2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \\ -2 & 2 & -1 & 1 \\ 2 & -2 & 1 & -1\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ -2 \\ 2\end{array}\right] . \quad$ (yay, nonzero!)
The corresponding general solution is described by
$\vec{x}(t)=c_{1} \vec{u}_{1} e^{0}+c_{2} \vec{u}_{2} e^{-2 t}+c_{3} \vec{u}_{3} e^{-2 t}+c_{4}\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{-2 t}$

OR

$\vec{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 0\end{array}\right] e^{-2 t}+c_{3}\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -2\end{array}\right] e^{-2 t}+c_{4}\left(\left[\begin{array}{c}1 \\ -1 \\ -2 \\ 2\end{array}\right] t+\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right]\right) e^{-2 t}$

Observe that $\vec{v}_{1}=\vec{u}_{2}-\vec{u}_{3}$.

