Oral Probability Questions

These are notes made in preparation for oral exams involving the following topics in probability: Random walks, Martingales, and Markov Chains. Textbook used: "Probability: Theory and Examples," Durrett.

Chapter 4

1. Define a Random Walk
 Let X_1, X_2, \ldots be iid taking values in \mathbb{R}^d
 and let $S_n = X_1 + \ldots + X_n$. S_n is a random walk.

2. Name a Random Walk Theorem
 - **RW Possibilities on R**: Four possibilities, one w/prob = 1.
 - $S_n = 0 \forall n$, (recurrent)
 - $S_n \to \pm \infty$, (transient)
 - $-\infty = \liminf S_n < \limsup S_n = \infty$ (recurrent)
 - **RW Recurrence on \mathbb{R}^d**:
 - S_n recurrent in $d=1$ if $S_n / n \to 0$ in probability. (or SSRW)
 - S_n recurrent in $d=2$ if S_n / n converges in distribution to a non-deg. norm. dist. (or SSRW)
 - S_n transient in $d \geq 3$ if is "truly three-dimensional"
 - **RW Equivalencies Theorem**: Let $\tau_0 = 0$ and $\tau_n = \inf \{ m > \tau_{n-1} : S_m = 0 \}$ be time of nth return to 0. Then, $P(\tau_1 < \infty) = 1 \iff P(S_m = 0 \text{ i.o.}) = 1 \iff \sum_{m=0}^\infty P(S_m = 0) = \infty$.
 - **RW Convergence/Divergence Theorem**: Convergence (divergence) of $\Sigma_n P(|S_n| < \epsilon) \forall \epsilon > 0$ is sufficient to determine transience (recurrence) of S_n.

3. Does (a version of 1) always have _________ property (related to 2)?
 - For iid X_i, X_2, \ldots, is exchangeable sigma field ϵ trivial? Yes. By Hewitt Savage 0-1. $P(A) \in \{0,1\}$ for each $A \in \epsilon$
 - Types of sets for RW recurrent values (V)? Empty set, or a closed subgroup of \mathbb{R}^d.
 - If V (recurrent values) is a closed subgroup, $V = \phi \iff \phi$={Possible Values}

4. Question that leads to a Counterexample/Example.
 - Are SSRW always recurrent? They are on $d < 3$.
 - Are RW on \mathbb{R}^d always recurrent w/ $d < 3$? No, only w/ SSRW or w/ correct convergence (see above)
 - Will Wald’s theorem hold with a SSRW $S_n = X_1 + \cdots + X_n$, with $X_n \in \{\pm1\}$ starting at $S_0 = 0$, with a stopping time T when $S_T = s \neq 0$? (Wald has X_i as iid w/ $E[|X]| < \infty$ and $E[X] < \infty$)
 Note that for any SSRW, that the time T to any position $S_T = s$ is finite, with probability one. However, the expected time is infinite. Therefore, it does not satisfy one of Wald’s Theorem's assumptions.
 Proof by Contradiction: Having conditioned on $C = \{ S_T = X_1 + \cdots + X_T = s \}$, then the conditioned expectation $E(X_T + \cdots + X_T | C) = s$ is evident; furthermore, since $X_n = \pm 1$ for all n with equal probability, we easily see that $E[X] = 0$. Under these observations, assuming Wald’s Identity ($E[S_T] = \mu \cdot T$), we obtain an immediate contradiction ($s \neq 0 \cdot T$).
If S, T are stopping times, then is it necessary that $(S - T)$ is a stopping time?

$S - T$ is not necessarily a stopping time. For a counterexample, consider the simple random walk (X_n) on $\{\ldots, -1, 0, 1, \ldots\}$ starting at $X_0 = 0$, and let $S := \inf\{n: X_n = 1\}$ and $T := 1$. Note that \(\{S - T = 1\} = \{S = 2\}\) which is not X_1-measurable.

Examples of stopping times

- To illustrate some examples of random times that are stopping rules and some that are not, consider a gambler playing roulette with a typical house edge, starting with 100 and betting 1 on red in each game:
- Playing exactly five games corresponds to the stopping time $\tau = 5$, and is a stopping rule.
- Playing until he either runs out of money or has played 500 games is a stopping rule.
- Playing until he is the maximum amount ahead he will ever be is not a stopping rule and does not provide a stopping time, as it requires information about the future as well as the present and past.
- Playing until he doubles his money (borrowing if necessary) is not a stopping rule, as there is a positive probability that he will never double his money.
- Playing until he either doubles his money or runs out of money is a stopping rule, even though there is potentially no limit to the number of games he plays, since the probability that he stops in a finite time is 1.

1. **Define: Stopping Time**

 $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \geq 0}, P)$ a filtered prob space.

 Stopping time $T : \Omega \to \mathbb{Z}_+ \cup \{+\infty\}$ is r.v. s.t. $\{T \leq n\} \in \mathcal{F}_n$ for all $n \geq 0$.

2. **Name a Stopping Time Theorem**

 - **Wald's Identity:** Let X_0, X_1, \ldots be iid w/ $\mu := E[X_0] < \infty$. Set X_0 and let $S_i = X_i + \ldots + X_n$, and T be stopping time w/ $E[T] < \infty$. Then, $E[S_T] = \mu E[T]$.
 - If S, T, T_n are stopping times on $(\Omega, \mathcal{F}, \mathcal{F}_n, P)$. Then so are:
 - $S + T$, \quad $S \wedge T := \min(S, T)$, \quad $S \vee T := \max(S, T)$
 - $\liminf_{n} T_n$ and $\inf_{n} T_n$, \quad $\limsup_{n} T_n$ and $\sup_{n} T_n$

3. **Does (a version of 1) always have __________ property (related to 2)?**
 - Are constants stopping times? Yes.

4. **Question that leads to a Counterexample/Example.**

 If stopping time T and \mathcal{F}_T, and X_0, X_1, X_2, \ldots iid, is $\{X_{T_n}\}_{n=0}^{\infty}$ independent of \mathcal{F}_T for all T? Yes.

 Examples of Stopping Times:
 - Constants
 - If X_n is an adapted process, and $A \in \mathcal{F}_T$, the first entry time into A is a stopping time.
Chapter 5

1. Define: Martingale (or sub, or super)
 \(X_n \) on \((\Omega, F, P, F_n) \), s.t.
 - \(X_n \) is adapted to \(F_n \).
 - \(\mathbb{E}|X_n| < \infty \) for each \(n \).
 - \(\mathbb{E}[X_{n+1}|F_n] = X_n \) a.s. \(\forall n \) (or \(\geq \), or \(\leq \) resp.)

2. Name a Martingale Theorem
 - **Stopping Time (Super)Martingale Prop**: If \(T \) is a stopping time and \(X_n \) is a (super)mart, then \(X_{T \wedge n} \) is a (super)mart.
 - **Submartingale Convergence**: Suppose that \(X_n \) is a sub-martingale with \(\sup_n \mathbb{E}[X_n] < \infty \). Then for some \(X \), we have \(X_n \rightarrow X \) a.s., where \(\mathbb{E}[X] < \infty \).
 - **Martingale Convergence**: If \(X_n \) is a martingale with \(\sup_n \mathbb{E}[X_n] < \infty \), then \(X_n \rightarrow X \) a.s. and \(\mathbb{E}[X] < \infty \).
 - **Nonnegative SuperMartingale Convergence**: If \(X_n \) is a super-martingale with \(X_{n} \geq 0 \), then \(X_n \rightarrow X \) a.s. and \(\mathbb{E}[X] \leq \mathbb{E}[X_0] \).
 - **Galton-Watson**: Let \(\xi_n, i \geq 1, n \geq 0 \) be iid nonnegative integer-valued r.v.s with a common \(\mu := \mathbb{E}[\xi_1] \in (0, \infty) \). Define \(Z_0 = 1 \) and \(Z_{n+1} = \xi_1 + \cdots + \xi_{Z_n} \) if \(Z_n > 0 \); and 0 if \(Z_n = 0 \). Then, \((Z_n/\mu)^n \) is a martingale with respect to \(F_n = \sigma(\xi_i, n \geq 1, 0 \leq i < n) \).

3. Does (a version of 1) always have _________ property (related to 2)?
 - Do supermartingales always converge a.s.? Not necessarily, it’s guaranteed when \(X_n \) nonnegative.
 - If \(\mu < 1 \), Then \(P(\text{extinction}) = ? \quad P(\text{extinction}) = 1 \).

4. Question that leads to a Counterexample/Example.
 - When \(\mu = 1 \), is \(P(\text{extinction}) \) equal to 1? Only when \(P(\xi_1 = 1) < 1 \).
 - From Durrett Exmpl. 5.2.3: Do nonnegative martingales converge in \(L^1 \)?
 - Not always. Let \(S_n \) be a symmetric simple random walk with \(S_0 = 1 \), i.e., \(S_n = S_{n-1} + \xi_n \) where \(\xi_1, \xi_2, \ldots \) are i.i.d. with \(P(\xi_1 = 1) = P(\xi_1 = -1) = 1/2 \). Let \(N = \inf\{n : S_n = 0\} \) and let \(X_n = S_{N \wedge n} \). Since the martingale property is closed under stopping times, \(X_n \) is a nonnegative martingale. The Nonnegative SuperMartingale Convergence Theorem implies \(X_n \) converges a.s. to a limit \(X < \infty \) that must be \(= 0 \), since convergence to \(k > 0 \) is impossible. (If \(X_n = k > 0 \) then \(X_{n+1} = k \pm 1 \).) Since \(\mathbb{E}X_n = \mathbb{E}X_0 = 1 \) for all \(n \) and \(X_n = 0 \), convergence cannot occur in \(L^1 \). \(\mathbb{E}[X_n - X_0] = \mathbb{E}[X_0] \rightarrow 1 \neq 0 \).
 - Consider the random walk \(S_n = X_1 + \cdots + X_n \) starting at zero with \(X_n \)'s having \(P(X_n = 1) = P(X_n = -1) = \frac{1}{2} \), a martingale. Now if \(T = \inf\{n \geq 0 : S_n = 1\} \). Can we bound \(T \)?
 - No. For any \(n \in \{1, 2, \ldots \} \) we have \(P(S_k \leq 0 \text{ for all } k \leq n) \geq P(X_n = \ldots = X_0 = -1) = 1/2^n \) since \(\{S_k \leq 0 \text{ for all } k \leq n\} \subseteq \{T > n\} \), this implies \(P(T > n) \geq P(S_k \leq 0 \text{ for all } k \leq n) \geq 1/2^n > 0 \). As \(n \in \mathbb{N} \) is arbitrary, this proves that \(T \) is unbounded.
 - **Do all Martingales which converge in probability, also do so in \(L^1 \)?**
 - No. Any martingale which converges almost surely but not in \(L^1 \) does the job (since a.s. conv. implies conv. in prob.); see example 5.2.3 above.
• If \(E(X_{n+1} | X_n) = X_n \) for all \(n \), must \(X_n \) be a martingale (instead of \(E(X_{n+1} | F_n) = X_n \))?

 No. Let \((Y_i)_{i \in \mathbb{N}} \) be a sequence of iid r.v. such that \(EY_i^2 = 0 \). Fix \(N \in \{1,2,\ldots\} \) and define: \(X_n := \sum_{i=1}^n Y_i \) for all \(n \leq N \), and \(X_n := X_N + Y_1 + Y_2 - X_2 \) for all \(n > N \).

 For \(n \leq N \) and \(n > N + 1 \), the condition \(E(X_n | X_{n-1}) = X_{n-1} \) is obviously satisfied. For \(n = N + 1 \), we have \(E(X_{N+1} | X_N) = X_N + E(Y_1 | X_N) - E(Y_2 | X_N) \). Since \((Y_i)_{i \in \mathbb{N}} \) is identically distributed and independent, we have \(E(Y_1 | X_N) = E(Y_2 | X_N) \) and therefore \(E(X_{N+1} | X_N) = X_N \). On the other hand,

 \[
 \mathbb{E}(X_{N+1} | F_N) = X_N + 2\mathbb{E}(Y_1 | F_N) - \mathbb{E} \left(Y_1 + Y_2 \bigg| F_N \right) = X_N + 2Y_1 - (Y_1 + Y_2) = X_{N+1} \neq X_N.
 \]

 So, \(X_n \) is not a martingale.

1. Define: Optional Stopping Sigma-Field

 Let \((\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \geq 0}, P) \) and \(T \) be stopping time.

 Denote by \(\mathcal{F}_T \), the \(\sigma \)-field of "events which occur prior to time \(T \)."

 In symbols: \(\mathcal{F}_T := \{ A \in \mathcal{F} : A \cap \{ T \leq n \} \in \mathcal{F}_n, \forall n \geq 0 \}. \)

2. Name an Optional Stopping Time Theorem

 Optional Stopping Thm for SubMarts (or mart)

 If \(S,T \) are stopping times w/\(P(S \leq T < \infty) = 1 \), and \((X_{T\wedge n})_{n \geq 0} \) is UI submart, then \(\mathbb{E}[X_T | \mathcal{F}_S] \leq X_S \) a.s.

 Consequently, \(\mathbb{E}[X_T] \leq \mathbb{E}[X_S] \). (switch to =’s for mart)

3. Does (a version of 1) always have \underline{property} (related to 2)?

 • If \(T \) is a stopping time, then is \(F_T \) a Sigma field? Yes

 • If \(X_n \) is UI sub-martingale and \(T \) a stopping time, is \(X_{T\wedge n} \) UI? Yes

 • If \(S \leq T \) are stopping times, then is \(F_S \subseteq F_T \)? No, but \(F_S \subseteq F_T \).

4. Question that leads to a Counterexample/Example.

 • If \(T \) is a stopping time, and \(X_n \) adapted, then is \(X_T \in F_T \)? Not necessarily, this is only guaranteed when \(P(T < \infty) = 1 \).

1. Define: Conditional Expectation

 \((\Omega, \mathcal{F}, P) \) w/\(X \in L^1, G \subseteq \mathcal{F}, Y := \mathbb{E}[X | G] \) is unique s.t.

 \(Y \) is \(G \)-measurable and \(\mathbb{E}[Y] < \infty \).

 \[
 \mathbb{E}[\mathbb{E}[X | G] 1_A] = \mathbb{E}[Y 1_A] = \mathbb{E}[X 1_A], \quad A \in G
 \]
2. **Name a Conditional Expectation Theorem**
 - **Conditional MCT**: Let $G \subseteq \mathcal{F}$.
 Let $X_n \geq 0$ be integrable r.v.s and $X_n \uparrow X$.
 Then $\mathbb{E}[X_n \mid G] \uparrow \mathbb{E}[X \mid G]$ a.s.
 - **Conditional DCT**: Let $G \subseteq \mathcal{F}$.
 If $X_n \to X$ a.s. and $|X_n| \leq Y$ for some integrable r.v. Y.
 Then $\mathbb{E}[X_n \mid G] \to \mathbb{E}[X \mid G]$ a.s.
 - **Conditional Jensen’s**: Let $G \subseteq \mathcal{F}$.
 If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex, $\mathbb{E}|X| < \infty$ and $\mathbb{E} \varphi(X) < \infty$.
 Then $\mathbb{E}[\varphi(X) \mid G] \geq \varphi(\mathbb{E}[X \mid G])$ a.s.

3. **Does (a version of 1) always have ______ property (related to 2)**

4. **Question that leads to a Counterexample/Example.**
 - If X,Y are two random variables and $\mathbb{E}(X|Y)=\mathbb{E}(X)$, are X and Y independent?
 Not necessarily. Let $X \in \{-1,0,1\}$, each with probability $\frac{1}{3}$. Let $Y=X^2$. Note that X and Y are not independent. However, observe that $\mathbb{E}(X)Y=0=0$ and $\mathbb{E}(X|Y=1) = \frac{1}{3} \cdot (-1) + \frac{1}{3}(1) = 0$, so $\mathbb{E}(X|Y)=0=\mathbb{E}(X)$ with probability 1.

1. **Define: Uniform Integrability**
 Family of r.v.s $(X_{a})_{a \in A}$ is uniformly integrable (UI) if
 $$\sup_{a \in A} \mathbb{E}[|X_a| \mid \{X_a \mid \mathcal{P} \}] \to 0 \text{ as } M \to \infty.$$
 Remark: Since $\mathbb{E}|X_a| \leq M + \mathbb{E}[|X_a| \mid \{X_a \mid \mathcal{P} \}]$, then UI $\Rightarrow L^1$-bounded uniformly for $(X_a)_{a \in A}$.

2. **Name a UI Theorem**
 - **Sub σ-field UI Lemma**: Let $X \in L^1(\Omega,F,P)$. Then, $\{\mathbb{E}(X \mid G) : G \sigma\text{-field} \subseteq \mathcal{F}\}$ is UI. Used in Levy’s Fwd Law.
 - If $X_n \to X$ in probability, then TFAE:
 - (X_n) is UI.
 - $X_n \to X$ in L^1.
 - $\mathbb{E}[X_n - X] \to 0$.
 - $\mathbb{E}[X_n \to \mathbb{E}[X]<\infty$.
 - **Convergence in Prob Corollary**:
 - If $X_n \to X$ in prob. and (X_n) is UI $\iff X_n \to X$ in L^1.
 - If $X_n \to X$ in prob and $|X_n| \leq Y$ for some $Y \in L^1$ (L^1 bounded), then $X_n \to X$ in L^1.
 - **Submartingale Equivalencies Thm**: For a submart X_n, TFAE:
 - (X_n) is UI.
 - X_n converges a.s. and in L^1.
 - X_n converges in L^1.
 - If X_n is a martingale, then \exists integrable r.v. X so that $X_n = \mathbb{E}[X \mid F_n]$.

Jodin Morey 2020
3. Does (a version of 1) always have __________ property (related to 2)?
 ● Do UI sub martingales converge almost surely? Yes.

4. Question that leads to a Counterexample/Example.
 ● For a reverse martingale (X_n,\mathbb{F}_n), clearly, $E[X_0]=X_n$, for each $n\in\{1,2,\ldots\}$. Is $E[X_0 | \mathbb{F}_n]$ UI?
 Yes. Proof: Since (X_n) is a martingale, we have: $E[X_0] < \infty$. So by the Subsigma Field UI Lemma, we have $E[X_0 | \mathbb{F}_n]$ is UI.

 Durrett Example 5.5.1. Suppose X_1,X_2,\ldots are UI and $X_n \rightarrow X$ a.s. Need $E(X_n|F)$ converge a.s.?
 No. Let Y_1, Y_2, \ldots and Z_1, Z_2, \ldots be independent r.v.’s with $P(Y_1 = 1) = 1/n$, $P(Y_n = 0) = 1 - 1/n$, $P(Z_n = n) = 1/n$, $P(Z_n = 0) = 1 - 1/n$. So our counterexample uses $X_n := Y_n Z_n$. Observe that $E(X_n : |X_n| \geq 1) = n/n^2$, so X_n is UI. Also, $P(X_n > 0) = 1/n^2$ so $\Sigma P(X_n > 0) < \infty$, $P((X_n > 0) \ i.o.)=0$, and the Borel-Cantelli lemma implies $X_n \rightarrow 0$ a.s. Let $F = (Y_1, Y_2, \ldots)$. Then, $E(X_n|F) = Y_n E(Z_n|F) = Y_n E(Z_n) = Y_n$. Since $Y_n \rightarrow 0$ in L^1 but not a.s., the same is true for $E(X_n|F)$. Since $\Sigma P(Y_n > 1/2) = \Sigma 1/n = \infty$, then, apply Borel-Cantelli.

 ● Does every sequence X_n which converges almost surely, also converge in L^1?
 No, take the sequence $n \cdot 1_{[0,1/n]}$, and note that it converges almost surely to zero. Also note that $E[n \cdot 1_{[0,1/n]}] = 1$ for all n. So, $\lim E[n \cdot 1_{[0,1/n]} X] = \lim E[n \cdot 1_{[0,1/n]}] = 1 \neq 0$.

 ● For a martingale X_n, does UI imply integrability of sup$|X_n|$?
 No, but the counterexamples are not trivial.

 ● Non-trivial martingale which converges almost surely to 0
 Let Y_1, Y_2, \ldots be nonnegative i.i.d. random variables with $E(Y_n)=1$ and $P(Y_n=1)<1$.
 (i) Show that $X_n = \prod_{m\geq n} Y_m$ defines a martingale. (ii) Use an argument by contradiction to show $X_n \rightarrow 0$ a.s.
 (i) is easy to check.
 (ii) Let $X = \lim X_n$. The Hewitt-Savage zero one law says (since $X \in \mathcal{E}$ exchangeable sigma field) that X is almost surely a constant. Also, $X=Y_1 \prod_{m=2} Y_m$ has the same distribution as $Y_1 X$. Since Y_1 is not constant a.s., this forces $X \in \{0,\infty\}$, but $X \neq \infty$ since by Fatou and Y_n independence we have: $E(X) = E(\lim X_n) = E(\lim \prod_{m\geq n} Y_m) = \lim E(\prod_{m\geq n} Y_m) = \lim E(Y_n) = 1$. So $X=0$, and $X_n \rightarrow 0$ a.s.

Chapter 6

1. Define: Markov Chain
 An (\mathbb{F}_n)-adapted stochastic process X_n taking values in (S,S) is called a Markov chain if it has the Markov Property: $P(X_{n+1} \in B|X_n) = P(X_{n+1} \in B|X_n)$ a.s. for each $B \in S$, $n \geq 0$.

2. Name a Markov Chain Theorem
 ● Decomposition Theorem: Let $R=\{x: P_{xx}=1\}$ be the recurrent states of a Markov chain. R can be written as $\cup_i R_i$, where each R_i is closed and irreducible. [This results shows that for the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]
 ● For an irreducible and recurrent chain (Corollary 6.46):
 ○ The stat/inv measures are unique up to constant multiples.
 ○ If μ is a stat/inv measure, then $\mu(x)>0$ for all x.
 ● If p is irreducible and has a stationary distribution π.
 ○ Calculating Stat/Inv Distribution: $\pi(x)=1/E_x[T_x]$.
 ○ Theorem D6.5.7: Any other stationary measure is a multiple of π.
Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with stationary distribution \(\pi \). Then, \(p^n(x,y) \to \pi(y) \) as \(n \to \infty \), for all \(x,y \in S \).

Theorem 6.62 (Asymptotic Density of Returns): Let \(y \in S \) be recurrent, and \(N_n(y) = \sum_{i=1}^{n} 1_{\{X_i = y\}} \), then \(\lim N_n(y)/n = (1/E_x[T_x])1_{\{T_x = \infty\}} P_x - a.s. \)

3. Does (a version of 1) always have _________ property (related to 2)?

4. Question that leads to a Counterexample/Example.
 - Multivalued Markov Chain: If \(\xi_0, \xi_1, \ldots \) are iid \(H,T \), each with \(p = 1/2 \), then \(X_n := \{\xi_n, \xi_{n+1}\} \) is a Markov chain.
 - (HW 3): If \(\xi_0, \xi_1, \ldots \) are iid \(-1,1 \) with \(p = 1/2 \), and \(S_0 = 0 \), \(S_n := \xi_1 + \xi_2 + \ldots + \xi_n \), and \(X_n = \max \{S_m : 0 \leq m \leq n\} \). Then is \(X_n \) is a Markov chain?
 - No. Observe the sequence \((X_1, X_2, X_3) = (1,1,1) \). This can occur if \((S_1, S_2, S_3) = (1,0,1) \), or if \((S_1, S_2, S_3) = (1,0,-1) \). Therefore, we have: \(P(X_1 = 2 | X_1 = 1, X_2 = 1, X_3 = 1) = (1/2)^3 = 1/8 \). Alternatively, take the sequence \((X_1, X_2, X_3) = (0,0,1) \), and observe that this only occurs in one way, namely if \((S_1, S_2, S_3) = (-1,0,1) \). Therefore, \(P(X_1 = 2 | X_1 = 0, X_2 = 0, X_3 = 1) = 1 \). Since the dependence includes more than just the previous value, \(X_n \) is not a Markov chain.

1. Define: Stationary Distribution
 It’s a stationary/invariant measure that is also a probability measure: \(\pi p = \pi \) such that \(\pi(y) = \sum_{x \in S} \pi(x)p(x,y) \), and \(\sum_{x \in S} \pi(x) = 1 \). It represents a possible equilibrium for the chain.

2. Name a Stationary Distribution Theorem
 - If \(p \) is irreducible and has a stationary distribution \(\pi \).
 - Calculating Stat/Inv Distribution: \(\pi(x) = 1/\mathbb{E}_x[T_x] \).
 - Theorem D6.5.7: Any other stationary measure is a multiple of \(\pi \).
 - Recurrence from Positive Stat/Inv Distributions: If \(\pi \) is a stationary/invariant distribution of a Markov chain and \(\pi(x) > 0 \) for some \(x \), then that \(x \) is recurrent.
 - Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with stationary distribution \(\pi \). Then, \(p^n(x,y) \to \pi(y) \) as \(n \to \infty \), for all \(x,y \in S \).

3. Does (a version of 1) always have _________ property (related to 2)?
 - What are sufficient conditions for a Markov chain’s stat/inv measures to be unique up to constant multiples? That it be irreducible and recurrent.
 - What are sufficient conditions for a Markov chain’s stat/inv measure, if it exists, to have the property \(\mu(x) = 0 \) for all \(x \)? That it be irreducible and recurrent.
 - What are sufficient conditions for a Markov chain’s stat/inv distribution, if it exists, to be unique? That it be irreducible and recurrent.
 - Assume a Markov chain is irreducible and recurrent, what are sufficient conditions to allow us to conclude that the stat/inv distribution cannot exist? The stat/inv measure has infinite mass.
 - If \(\pi \) is a stat/inv distribution and \(\pi(x) > 0 \), what do we know about \(x \)? It is recurrent.
 - If you have an irreducible Markov chain, and there is a positive recurrent value, does this imply the existence of a stationary distribution? Yes.
 - If you have an irreducible Markov chain, and every state is positive recurrent, does this imply the existence of a stationary distribution? Yes.
 - If you have an irreducible Markov chain that has a stationary distribution, does this imply the existence of a positive recurrent value? Yes.

Jodin Morey 2020
4. Question that leads to a Counterexample/Example.
 - Let X_n be a Markov chain, where S is the state space and P is the transition matrix. Is every closed class recurrent? No, for example a biased random walk on the integers is transient. Finite closed classes, on the other hand, are always recurrent.

1. Define: Markov Chain Recurrence
 A state $y \in S$ is called recurrent if $\rho_{yy}=1$, and is called transient if $\rho_{yy}<1$.

2. Name a Recurrence Theorem
 - Decomposition Theorem: Let $R = \{ x : \rho_{xx}=1 \}$ be the recurrent states of a Markov chain. R can be written as $\bigcup R_i$, where each R_i is closed and irreducible. [This result shows that for the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]
 - Theorem 6.62 (Asymptotic Density of Returns): Let $y \in S$ be recurrent. Then $\lim_{n \to \infty} N_n(y)/n = (1/E_x[T_y])1_{\{T_y<\infty\}}$, P_x-a.s.

3. Does (a version of 1) always have _________ property (related to 2)?

4. Question that leads to an Counterexample/Example.

1. Define: Markov Chain Irreducibility
 Markov chain is irreducible if it is possible to get to any state from any state. Formally, if its state space is a single communicating class, i.e., $x \leftrightarrow y$ for all $x, y \in S$.

2. Name an Irreducibility Theorem
 - Decomposition Theorem: Let $R = \{ x : \rho_{xx}=1 \}$ be the recurrent states of a Markov chain. R can be written as $\bigcup R_i$, where each R_i is closed and irreducible. [This result shows that for the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]
 - For an irreducible and recurrent chain (Corollary 6.46):
 - The stat/inv measures are unique up to constant multiples.
 - If μ is a stat/inv measure, then $\mu(x) > 0$ for all x.
 - If p is irreducible and has a stationary distribution π.
 - Calculating Stat/Inv Distribution: $\pi(x) = 1/E_x[T_y]$.
 - Theorem D6.5.7: Any other stationary measure is a multiple of π.
 - Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with stationary distribution π. Then, $p^n(x,y) \to \pi(y)$ as $n \to \infty$, for all $x, y \in S$.

3. Does (a version of 1) always have _________ property (related to 2)?

4. Question that leads to a Counterexample/Example.
 - If an irreducible Markov chain has period 2, then for every state $i \in S$ do we have $(P_i)^2 > 0$? No, consider P:

 \[
 \begin{bmatrix}
 0 & 1 \\
 1 & 0
 \end{bmatrix}
 \]

 Note that $P^2 = I_d$, so period=2 and $x \leftrightarrow y$. So it is irreducible. But, $P_i = 0$, so $(P_i)^2 = 0$.

Jodin Morey 2020
Other Counterexamples/Examples

- **Are Martingales always Markov processes?**
 No, assume that \(Z_i > 2 \) are independent, integrable, nonconstant (say, standard normal distributions), \(\mu=0, \) and \(Z_i \) independent of some \(X_0, \) where \(X_0 := X_i = 1 \) and \(X_i = X_{i-1} + Z_i \) for every \(t \geq 2. \) \(F_n = \sigma\{X_n, \ldots, X_1\}. \)
 Then \(E[X_i \mid F_{i-1}] = E[X_{i-1} + Z_{i} \mid F_{i-1}] = X_{i-1} + X_i \) (the martingale) for every \(t \geq 1 \) (hence, if \(X_0 \) is integrable, \((X_i)_{i \geq 0} \) is a martingale) but \((X_i)_{i \geq 0} \) is not a Markov process since the conditional distribution of \(X_i \) on \(F_{i-1} \) does not depend on \(X_{i-1} \) only, but on \((X_{i-1}, X_{i-2}). \)

- **If \(X_n \) is a homogeneous Markov chain, is it true that \(X_{n+2} \) is also a homogeneous Markov chain?**
 No. Consider the random walk on \(\{ -1, 0, 1, \ldots, 6 \} \) that with probability \(\frac{1}{6} \) each either: stays at its position, goes to the right, or to the left. We consider the particular transition probability:
 \[
p'(0,2) = P(X_{n+2} = 2 \mid X_{n+1} = 0, X_n = 0) = 0, \text{ while } p'(0,2) = P(X_4 = 2 \mid X_3 = 0) > 0.
 \]

- **If \(X_n \in \{-1, 1\}, S_0 = 0, \text{ and } S_n := X_1 + \cdots + X_n. \) Then is \((\{S_n\}_{n \geq 0}) \) a Markov-chain?**
 Not necessarily. Let \(F_n = \sigma\{X_1, \ldots, X_n\}. \) It is not a markov chain unless \(p = \frac{1}{2} \) (probability of a step to the left), and a counterexample is to take \(n = 1; \) then \(|S_1| = 1 \) but \(P(|S_2| = 1) = p \neq \frac{1}{2} \) if the first step was to \(S_1 = -1, \) but is \(P(|S_2| = 2) = 1 - p \neq \frac{1}{2} \) if the first step was to \(S_1 = 1. \) So, \(P(|S_2| = 2 : F_n) \in \{p, 1-p\} \) is not equal to \(P(|S_2| = 2 : |S_1| = \frac{1}{2}(1-p) + \frac{1}{2}p = \frac{1}{2} \not\in \{p, 1-p\}, \) and \((\{S_n\}_{n \geq 0}) \) is not a Markov-chain.

- **Does every chain that has a stationary distribution have a limiting distribution? No.**
 Recall that a Markov Chain has a limiting distribution if \(\pi = \lim_{n \to \infty} \pi_n, \forall n \in S, \) exists. In particular, if the limit does not depend on the starting state (and hence distribution) of the chain.
 We know a Markov Chain \(\{X_n\} \) with a stat. distr. \(\mu \) as its initial distribution is a stationary process, because if \(X_0 \sim \mu \) is a stationary distribution, then for each \(n, \ X_n \sim \mu_{X_{n-1}} \sim \mu. \) So, \((X_0, X_1, \ldots, X_n) \sim (X_0, X_1, \ldots, X_n) \) and \(\mu(0) = \mu(1) = \frac{1}{2}. \) Durrett said a special case to keep in mind for counterexamples is the Markov chain: \(X_t : \Omega \to S = \{0, 1\} \) with transition probability \(p(0,1) = p(1,0) = 1, \) and stationary distribution \(\mu(0) = \mu(1) = \frac{1}{2}. \) Now let \(X_t \in \{0, 1\} \)
 w/probability \(\frac{1}{2} \) (so not starting with the stat. dist.), so \((X_0, X_1, \ldots) \sim (0, 1, 0, \ldots) \) or \((1, 0, 1, \ldots) \) with probability \(\frac{1}{2}. \) Note that it does not have a limiting distribution. Durrett is demonstrating that this chain satisfies stationarity, and that it is useful to keep this Markov chain in mind when * picturing what stationarity means. In particular this is a commonly used counterexample to distinguish between stationary distributions, and limiting distributions.
 Regarding the limiting distribution, note that in this case \(\lim_{n \to \infty} p^n_{0,1} = 1 \) and \(\lim_{n \to \infty} p^n_{1,0} = 0, \) so the limit does not exist.
 Any chain that has a limiting distribution necessarily is stationary (since \(\pi \) can be shown to satisfy the stationarity property). The converse however is not true: and this is what the counterexample shows, since the limit above only exists if the chain is started from \(\mu(0) = \mu(1) = 1/2, \) and not from an arbitrary distribution. In general for finite, irreducible Markov chains
 - A stationary distribution always exists.
 - Existence of a limiting distribution implies stationarity.
 - If, in addition to being finite and irreducible, the chain is also aperiodic, then a limiting distribution is guaranteed to exist.