Theory of Probability Flashcards

Random Walks

<table>
<thead>
<tr>
<th>Theory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Walk</td>
<td>Let X_1, X_2, \ldots be iid taking values in \mathbb{R}^d and let $S_n = X_1 + \ldots + X_n$. S_n is a random walk.</td>
</tr>
</tbody>
</table>

| Stopping Time | $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \geq 0}, \mathbb{P})$ a filtered prob space. Stopping time $T : \Omega \to \mathbb{Z}_+ \cup \{+\infty\}$ is r.v. s.t. $\{T \leq n\} \in \mathcal{F}_n$ for all $n \geq 0$, or equivalently, $\{T = n\} \in \mathcal{F}_n$ for all $n \geq 0$. |

| Stopping Time Examples | Constant times (e.g., $T = 10$) are always stopping times. X_n an adapted process. Fix $A \in \mathcal{B}_\mathbb{R}$. Then first entry time into A, $T_A := \inf\{n \geq 0 : X_n \in A\}$, w/inf $\emptyset := +\infty$ is stopping time |

| Stopping Times Closure Lemma | If S, T, T_n are stopping times on $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n \geq 0}, \mathbb{P})$. Then so are: $S + T$, $S \land T := \min(S, T)$, $S \lor T := \max(S, T)$, $\liminf_n T_n$ and $\inf_n T_n$, $\limsup_n T_n$ and $\sup_n T_n$ |

| Permutable Event | Given random seq. S and state space $\Omega := \{(\omega_1, \omega_2, \ldots) : \omega_i \in S\}$ Event $A \in \mathcal{F}$ is permutable if $\pi^{-1}A = \{\omega : \pi \omega \in A\} = A$, for any finite permutation π. $\varepsilon := \{A : A$ is permutable$\}$ |

| Symmetric Function | $f : \mathbb{R}^n \to \mathbb{R}$ is symmetric if $f(x_1, x_2, \ldots, x_n) = f(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})$ for each $(x_1, \ldots, x_n) \in \mathbb{R}^n$ and for each permutation $\pi \in \{1, 2, \ldots, n\}$ |

| Exchangeable σ-field | X_1, X_2, \ldots r.v.s on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $F_n := \{f : \mathbb{R}^n \to \mathbb{R}$ symmetric m’ble$\}$. Let $\varepsilon_n := \sigma(F_n, X_{n+1}, X_{n+2}, \ldots)$. Exchangeable σ-field $\varepsilon := \cap_{n=1}^\infty \varepsilon_n$. |

| Hewitt Savage 0-1 Law | ε exchngble σ-field of iid X_1, X_2, \ldots, $\mathcal{F} = \sigma(X_1, X_2 \ldots)$, then $\mathbb{P}(A) \in \{0, 1\}$, $\forall A \in \varepsilon$ |

| Random Walk Possibilities on \mathbb{R} | RWs on \mathbb{R}, 4 possibilities, one w/prob = 1. $S_n = 0 \forall n$, $S_n \to \pm\infty$, or $-\infty = \liminf S_n < \limsup S_n = \infty$ |

4/22/2020 Jodin Morey
| RW Conv/Transients Thm | Convergence (divergence) of $\sum_n \mathbb{P}(|S_n| < \varepsilon) \forall \varepsilon > 0$ is sufficient to determine transience (recurrence) of S_n |
|------------------------|--|
| RW Recurrence on \mathbb{R}^d | S_n recurrent in $d = 1$ if $S_n/n \xrightarrow{p} 0$. (or SSRW)
S_n recurrent in $d = 2$ if $S_n/\sqrt{n} \Rightarrow$ non-deg. norm. dist. (or SSRW)
S_n transient in $d \geq 3$ if it is “truly three-dimensional” |
| Recurrence Thm for RWs | $\{\text{recurrent values}\} = \emptyset$ or is closed subgroup of \mathbb{R}^d.
If closed subgroup, then $\{\text{recurrent values}\} = \{\text{possible values}\}$ |
| RW Equivalencies Thm (Hint: Recurrence) | Let $\tau_0 = 0$ and $\tau_n = \inf\{m > \tau_{n-1} : S_m = 0\}$ be time of nth return to 0
$\mathbb{P}(\tau_1 < \infty) = 1 \iff \mathbb{P}(S_m = 0 \text{ i.o.}) = 1 \iff \sum_{m=0}^{\infty} \mathbb{P}(S_m = 0) = \infty$ |
| Wald’s Identity | ξ_1, ξ_2, \ldots be iid w/ $\mu := \mathbb{E}[\xi_n] < \infty$. Set ξ_0 and let $S_n = \xi_1 + \ldots + \xi_n$
Let T be stopping time w/ $\mathbb{E}[T] < \infty$. Then, $\mathbb{E}[S_T] = \mu \mathbb{E}[T]$ |
| Recurrent Value | $x \in S$ is recurrent if, $\forall \varepsilon > 0$, we have $\mathbb{P}(|S_n - x| < \varepsilon \text{ i.o.}) = 1$ |
| Possible Value (of RW) | $S := \{\text{possible values}\}$.
$x \in S$ if for $\forall \varepsilon > 0$, $\exists n$ such that $\mathbb{P}(|S_n - x| < \varepsilon) > 0$. |
| Transient/Recurrent (RW) | If $\{\text{recurrent values}\} = \emptyset$, RW is transient, otherwise it is recurrent |
Martingales

| Conditional Expectation | \((\Omega, \mathcal{F}, P) \) w/ \(X \in L^1, \ G \subseteq \mathcal{F}, \ Y:= \mathbb{E}[X|G]\) is unique s.t.
| | \(Y \) is \(G\)-measurable and \(\mathbb{E}|Y| < \infty.\)
	\(\mathbb{E}[\mathbb{E}[X	G]1_A] = \mathbb{E}[Y1_A] = \mathbb{E}[X1_A], \ A \in G\)	
\(E[X	A], \ where \ A \ is \ an \ event \ is: \)	Expected value of \(X\) given that \(A\) occurs	
\(E[X	Y], \ where \ Y \ is \ a \ r.v. \ is: \)	\(r.v\) whose value at \(\omega \in \Omega\) is \(\mathbb{E}[X	A]\) where \(A\) is the event \(\{Y = Y(\omega)\}\)
\(\mathbb{E}[X1_A] \) is:	The case of \(\mathbb{E}[X	Y]\), for \(r.v. \ Y = 1_A,\) and \(1_A(\omega)\) is 1 if \(\omega \in A\) and 0 otherwise.	
\(\) It’s a \(r.v\) that returns \(\mathbb{E}[X|A]\) if \(\omega \in A\) and \(\mathbb{E}[X|A^c]\) if \(\omega \notin A\) |

Absolute Continuity

Let \(\nu\) and \(\mu\) be \(\sigma\)-finite measures on \((\Omega, \mathcal{F})\).
\(\nu << \mu, \) means that \(\mu(A) = 0 \Rightarrow \nu(A) = 0, \) for each \(A \in \mathcal{F}\)

Radon-Nikodym Lemma

Let \(\nu\) and \(\mu\) be two \(\sigma\)-finite measures on \((\Omega, \mathcal{F})\). \(\nu << \mu \Leftrightarrow \exists \mathcal{F}\)-measurable \(f : \Omega \rightarrow [0, \infty)\) s.t. \(\nu(B) = \int_B f d\mu, \ \forall B \in \mathcal{F}\)

| If \(X \in G, \ then \ E[X|G] = \) | \(X\) a.s. |
| If \(G = \{\emptyset, \Omega\}, \ then \ E[X|G] = \) | \(\mathbb{E}[X]\) |
| If \(X\) independent of \(G, \ then \ E[X|G] = \) | \(\mathbb{E}[X]\) a.s. To prove this, observe that \(\mathbb{E}[X]\) is \(G\)-measurable and for any \(A \in G\) we have:
| | \(\mathbb{E}[X1_A] = \mathbb{E}[X]\mathbb{E}[1_A] = \mathbb{E}[\mathbb{E}[X]1_A].\) |
| Pre-Tower Property | If \(\mathcal{F} \subset \mathcal{G}\) and \(\mathbb{E}[X|\mathcal{G}] \in \mathcal{F}, \) then
| | \(\mathbb{E}[X|\mathcal{F}] = \mathbb{E}[X|\mathcal{G}]\) |
Tower Property	Let $H \subseteq G$ be sub-σ-fields of \mathcal{F}. Then: $\mathbb{E}[\mathbb{E}[X	G]	H] = \mathbb{E}[X	H]$ a.s.			
Take out what is known	If X is G-measurable, then for any r.v. Y s.t. $\mathbb{E}	Y	< \infty$ and $\mathbb{E}	XY	< \infty$, we have: $\mathbb{E}[XY	G] = X\mathbb{E}[Y	G]$ a.s.
Conditional MCT	Let $X, X_n \geq 0$ be integrable r.v.s and $X_n \uparrow X$. Then $\mathbb{E}[X_n	G] \uparrow \mathbb{E}[X	G]$ a.s.				
Conditional Jensen’s Inequality	If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex, $\mathbb{E}	X	< \infty$ and $\mathbb{E}	\varphi(X)	< \infty$, then $\mathbb{E}[\varphi(X)	G] \geq \varphi(\mathbb{E}[X	G])$ a.s.
\(L^p\) Contraction of Cond. Expectation	For $p \geq 1$, and $G \in \mathcal{F}$, $\mathbb{E}[\mathbb{E}[X	G]	^p] \leq \mathbb{E}[X	^p]$.		
Proof: Jensen’s $\Rightarrow \mathbb{E}[|X|G]^p \leq \mathbb{E}[|X|^p : G]$. Now take the expectation of both sides. |
<p>| Conditional Fatou’s Lemma | Let $X_n \geq 0$ be integrable r.v.s. and $\lim \inf_n X_n$ be integrable. Then $\mathbb{E}[\lim \inf_n X_n|G] \leq \lim \inf_n \mathbb{E}[X_n|G]$ a.s. |
| Conditional DCT | If $X_n \to X$ a.s. and $|X_n| \leq Y$ for some integrable r.v. Y. Then $\mathbb{E}[X_n|G] \to \mathbb{E}[X|G]$ a.s. |
| Chebyshev’s Conditional Inequality | If $a > 0$, then $\mathbb{P}(|X| \geq a|\mathcal{F}) \leq a^{-2}\mathbb{E}[X^2|\mathcal{F}]$ |
| Martingale | X_n on $(\Omega, \mathcal{F}, \mathbb{P}, \mathcal{F}_n)$, s.t. X_n is adapted to $\mathcal{F}n$. $\mathbb{E}|X_n| < \infty$ for each n. and, $\mathbb{E}[X{n+1}|\mathcal{F}_n] = X_n$ a.s. $\forall n$. (or \geq, or \leq resp.) |
| If X_n is a martingale, then for $n > m$, $\mathbb{E}[X_n|\mathcal{F}_m] =$ |
| If X_n is a martingale wrt \mathcal{F}_n and φ is convex, then: |
| (or sub) | If $\mathbb{E}|\varphi(X_n)| < \infty \forall n$, then $\varphi(X_n)$ is a sub-martingale wrt \mathcal{F}_n. Consequently, if $p \geq 1$ and $\mathbb{E}|X_n|^p < \infty \forall n$, then $|X_n|^p$ is a sub-martingale wrt \mathcal{F}_n. |</p>
<table>
<thead>
<tr>
<th>Predictable Sequence</th>
<th>R.v.s H_n are predictable wrt $\mathcal{F}n$ if it is $\mathcal{F}{n-1}$ measurable for each $n \geq 1$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doob's Martingale Transform</td>
<td>Let $(X_n)_{n \geq 0}$ be a $(\mathcal{F}n){n \geq 0}$–martingale, and H_n predictable.\nTransform is: $(H \cdot X)0 = 0$, $(H \cdot X)n = \sum{k=1}^{n} H_k(X_k - X{k-1})$.\nIf $(H \cdot X)_n$ integrable, then $(H \cdot X)_n$ is a martingale.</td>
</tr>
<tr>
<td>Doob's Mart Transform Lemma</td>
<td>Assume that X_n is a martingale and $(H \cdot X)_n \in L^1$, $\forall n$.\nThen, $H \cdot X$ is a $(\mathcal{F}n){n \geq 0}$-martingale.</td>
</tr>
<tr>
<td>Doob's Decomp</td>
<td>Submart X_n wrt \mathcal{F}_n can be uniquely written as sum of mart M_n and increasing predictable process A_n. Let $D_0 = X_0$, $D_i = X_i - E[X_i</td>
</tr>
<tr>
<td>Stopping Time SuperMartingale Prop</td>
<td>If T is a stopping time and $(X_n){n \geq 0}$ is a supermart\nthen $(X{T/n})_{n \geq 0}$ is a supermart</td>
</tr>
<tr>
<td>Stopped Martingale Corollary</td>
<td>If T is a stopping time and $(X_n){n \geq 0}$ is a martingale\nthen $(X{T/n})_{n \geq 0}$ is a martingal</td>
</tr>
<tr>
<td>Let T be a stopping time w/ $E[T] < \infty$, then $E[T] =$</td>
<td>$\sum_{i=1}^{\infty} P(T \geq i)$.</td>
</tr>
<tr>
<td>Doob’s Upcrosing Inequality</td>
<td>Let $a < b$, and $U_n[a,b]$ the # of upcrossings from $a \to b$ by n.\nIf X_n is submart, then $\mathbb{E}[U_n[a,b]] \leq \frac{\mathbb{E}[(X_n-a^+)] - \mathbb{E}[(X_n-a^+)]}{b-a}$</td>
</tr>
<tr>
<td>Martingale Convergence</td>
<td>Suppose that $(X_n)_{n \geq 0}$ is a sub-martingale with $\sup_n \mathbb{E}[X_n^+] < \infty$\nThen for some X, we have $X_n \to X$ a.s., where $\mathbb{E}</td>
</tr>
<tr>
<td>L^1-Bounded Martingale Convergence</td>
<td>If $(X_n)_{n \geq 0}$ is a martingale with $\sup_n \mathbb{E}</td>
</tr>
<tr>
<td>Non-negative Super-Mart Convergence</td>
<td>If $(X_n)_{n \geq 0}$ is a super-martingale with $X_n \geq 0$,\nthen $X_n \to X$ a.s. and $\mathbb{E}[X] \leq \mathbb{E}[X_0]$.</td>
</tr>
</tbody>
</table>
Let \mathcal{F}_n be filtration w/ $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and A_n events w/ $A_n \in \mathcal{F}_n$.
Then, $\{A_n \ i.o.\} = \left\{ \sum_{n=1}^{\infty} P(A_n | \mathcal{F}_{n-1}) = \infty \right\}$.
If $A_n = X_n \leq \varepsilon \implies A_n \Rightarrow 0$. If $A_n = X_n > \varepsilon \implies X_n \Rightarrow 0$.

Let μ be finite, ν a prob. measure, $\mathcal{F}_n \uparrow \mathcal{F}$ be σ-fields,
and μ_n, ν_n be restrictions of μ, ν to \mathcal{F}_n. If $\mu_n \ll \nu_n, \forall n$,
and we let $X_n = d\mu_n/d\nu_n$. Then, X_n is a martingale wrt \mathcal{F}_n.

If ξ^n_i iid nonnegative integer r.v.s w/ $\mu := \mathbb{E}[\xi^n_1] \in (0, \infty)$.
Let $Z_0 \deq 1$ and $Z_{n+1} \deq \sum_{i=1}^{\xi^n_1} \xi^n_i$, if $Z_n > 0$; or 0 otherwise.
Then, $\xi^n_1 \mathcal{F}_{n-1}$ is a mart wrt $\mathcal{F}_n = \sigma(\xi^n_i : i \geq 1, 0 \leq m < n)$.

If $\mu < 1$, then $Z_n = 0 \forall n$ sufficiently large, so $Z_n/\mu^n \to 0$
If $\mu = 1$ and $\mathbb{P}(\xi^n_1 = 1) < 1$, then $Z_n = 0, \forall n$ sufficiently large.
If $\mu > 1$, then $\rho < 1$, that is, $\mathbb{P}(Z_n > 0 \text{ for all } n) > 0$.

If X_m is submart & T is stopping time w/
$\mathbb{P}(T \leq k) = 1$, for some $k \in \mathbb{Z}_+$, then $\mathbb{E}[X_0] \leq \mathbb{E}[X_T] \leq \mathbb{E}[X_k]$.
(or $\mathbb{E}[X_0] = \mathbb{E}[X_T] = \mathbb{E}[X_k]$ for mart)

Let X_m be nonnegative submart, $X^*_n = \max_{0 \leq m \leq n} X_m$, $\lambda > 0$,
and $A = \{X^*_n \geq \lambda\}$. Then, $\mathbb{P}(A) \leq \frac{1}{\lambda} \mathbb{E}[X_n \mathbb{1}_A] \leq \frac{1}{\lambda} \mathbb{E}[X_n]$.

Suppose X_n is mart w/ sup $\mathbb{E}[|X_n|^p] < \infty$ for some $p > 1$.
Then, $X_n \Rightarrow X$ a.s. and in L^p.

Family of r.v.s $(X_n)_{n \in \Lambda}$ is uniformly integrable (UI) if
$\sup_{n \in \Lambda} \mathbb{E}[|X_n| 1_{\{|X_n| > M\}}] \to 0$ as $M \to \infty$. Remrk: Since
$\mathbb{E}|X_n| \leq M + \mathbb{E}[|X_n| 1_{\{|X_n| > M\}}]$, then UI $\Rightarrow L^1$-bounded

Let $X \in L^1(\Omega, \mathcal{G}, \mathbb{P})$.
Then, $\left\{ \mathbb{E}[X|\mathcal{G}] : \mathcal{G} \text{ a } \sigma \text{-field } \subset \mathcal{F} \right\}$ is uniformly integrable.

If $X_n \Rightarrow X$ in probability, then TFAE:
$\Rightarrow \{X_n : n \geq 0\}$ is uniformly integrable
$\Rightarrow X_n \Rightarrow X$ in L^1 ($\mathbb{E}|X_n - X| \to 0$)
$\Rightarrow \mathbb{E}|X_n| \Rightarrow \mathbb{E}|X| < \infty$.
[Note: L^1 convergence \Rightarrow convergent in probability and UI]
Martingale Convergence in Probability Corollary

If $X_n \xrightarrow{L^1} X$,

$$(X_n)_{n \geq 0} \text{ is UI } \iff X_n \xrightarrow{L^1} X.$$

$|X_n| \leq Y$ for some $Y \in L^1$, then $X_n \xrightarrow{L^1} X$.

Sub-martingale Equivalencies Thm

For a submart X_n, TFAE:

- ♦ $(X_n)_{n \geq 0}$ is UI. ♦ X_n converges a.s. and in L^1.

- ♦ X_n converges in L^1. Also, if $(X_n)_{n \geq 0}$ is a martingale, then

- ♦ \exists integrable r.v. X so that $X_n = \mathbb{E}[X|\mathcal{F}_n]$.

Levy’s 0-1 Law

Suppose that $\mathcal{F}_n \uparrow \mathcal{F}_\infty := \sigma(\bigcup_n \mathcal{F}_n)$.

and $A \in \mathcal{F}_\infty$, then $\mathbb{E}[1_A|\mathcal{F}_n] \to 1_A$ a.s.

From which you can conclude Kolmogorov’s 0-1.

Levy’s Forward Law

Suppose that $\mathcal{F}_n \uparrow \mathcal{F}_\infty := \sigma(\bigcup_n \mathcal{F}_n)$.

If $X \in L^1$, then $\mathbb{E}[X|\mathcal{F}_n] \to \mathbb{E}[X|\mathcal{F}_\infty]$ a.s. and in L^1.

Kolmogorov’s 0-1 Law

Let ξ_1, ξ_2, \ldots be independent r.v.s and $\mathcal{F}_n = \sigma(\xi_1, \xi_2, \ldots, \xi_n)$, $\forall n$.

Let $\mathcal{T} = \bigcap_{k=1}^\infty \sigma(\xi_k, \xi_{k+1}, \ldots)$ be tail σ-field.

Then $\forall A \in \mathcal{T}$, $\mathbb{P}(A) \in \{0, 1\}$.

DCT for Filtered Conditional Expectation

Suppose $Y_n \to Y$ a.s. and $|Y_n| \leq Z$, $\forall n$ where $\mathbb{E}[Z] < \infty$.

If $\mathcal{F}_n \uparrow \mathcal{F}_\infty$, then $\mathbb{E}[Y_n|\mathcal{F}_n] \to \mathbb{E}[Y|\mathcal{F}_\infty]$ a.s.

$\mathcal{F}_\infty = \sigma(\bigcup_n \mathcal{F})$

Backward Martingale

Let $(\mathcal{F}_{-n})_{n \geq 0}$ be sub-σ-fields, w/ $\ldots \subseteq \mathcal{F}_{-2} \subseteq \mathcal{F}_{-1} \subseteq \mathcal{F}_0$.

- ♦ $X_{-n} \in \mathcal{F}_{-n}$ for each $n \in \mathbb{Z}_+$.

- ♦ $X_{-n} \in L^1$ for each $n \in \mathbb{Z}_+$.

- ♦ $\mathbb{E}[X_{-n}|\mathcal{F}_{-(n+1)}] = X_{-(n+1)}$ for each $n \in \mathbb{Z}_+$.

Example of UI Martingale

For reverse martingale: clearly, $\mathbb{E}[X_0|\mathcal{F}_{-n}] = X_{-n}$ for each $n \in \mathbb{Z}_+$.

Hence, if $(X_{-n})_{n \in \mathbb{Z}_+}$ is a reverse martingale, then it is UI.

Proof: $\mathbb{E}[|X_0|] < \infty$, so by Sub σ-field UI Lemma, $\mathbb{E}[X_0|\mathcal{F}_{-n}]$ is UI.

Convergence of Reverse Mart Thm

Let $(X_n)_{n \geq 0}$ be reverse mart.

Then $X_{-n} \xrightarrow{n \to \infty} X_{-\infty}$ a.s. and in L^1.

Moreover, $\mathbb{E}[X_0|\mathcal{F}_{-\infty}] = X_{-\infty}$ where $\mathcal{F}_{-\infty} = \cap_{n \in \mathbb{Z}_+} \mathcal{F}_{-n}$.

Levy’s Backward Law

Let $Y \in L^1$. Suppose decreasing σ-fields $\mathcal{G}_0 \supseteq \mathcal{G}_1 \supseteq \mathcal{G}_2 \supseteq \ldots$

and $\mathcal{G}_\infty = \cap_{n=0}^\infty \mathcal{G}_n$. Then, $\mathbb{E}[Y|\mathcal{G}_n] \to \mathbb{E}[Y|\mathcal{G}_\infty]$ a.s. and in L^1.
<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchangeable Sequence</td>
<td>(X_n), where for each (n), ((X_1, X_2, \ldots, X_n) \overset{d}{=} (X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)})), (\forall) permutations (\pi).</td>
</tr>
<tr>
<td>de Finetti’s Thm</td>
<td>If (X_n) are exchangeable, then, conditional on (\epsilon), we have (X_1, X_2, \ldots) are iid.</td>
</tr>
<tr>
<td>Optional Stopping (\sigma)-field (\mathcal{F}_T)</td>
<td>Let ((\Omega, \mathcal{F}, (\mathcal{F}n){n \geq 0}, \mathbb{P})) and (T) be stopping time. Denote by (\mathcal{F}_T), the (\sigma)-field of "events which occur prior to time (T)." In symbols: (\mathcal{F}_T := { A \in \mathcal{F} : A \cap { T \leq n } \in \mathcal{F}_n, \ \forall n \geq 0 }).</td>
</tr>
<tr>
<td>Optional Stopping Proposition</td>
<td>If (T) is stopping time, then (\mathcal{F}_T) is (\sigma)-field & (T) is (\mathcal{F}_T)-measurable. If (S \leq T) is stopping time, then (\mathcal{F}_S \subseteq \mathcal{F}_T). Let (T) be stopping time (\mathbb{P}(T < \infty) = 1) & (X_n) be adapted, then (X_T \in \mathcal{F}_T).</td>
</tr>
<tr>
<td>UI SubMart Stopping Time Closure</td>
<td>If ((X_n){n \geq 0}) is UI sub-mart, then for any stopping time (T), ((X{T\wedge n})_{n \geq 0}) is UI.</td>
</tr>
<tr>
<td>UI SubMart Stopping Time Ineq.</td>
<td>If (X_n) is UI submart, then (\forall) stopping time (T \leq \infty), we have: (\mathbb{E}[X_0] \leq \mathbb{E}[X_T] \leq \mathbb{E}[X_\infty]), where (X_\infty = \lim X_n).</td>
</tr>
<tr>
<td>Optional Stopping Thm for SubMarts (or mart)</td>
<td>If (S, T) are stopping times (\mathbb{P}(S \leq T < \infty) = 1), and ((X_{T\wedge n})_{n \geq 0}) is UI submart, then (\mathbb{E}[X_T</td>
</tr>
<tr>
<td>Finite Differences Submartingale w/Stopping Times</td>
<td>Suppose (X_n) is a submart and (\mathbb{E}[</td>
</tr>
<tr>
<td>Nonneg SuperMart Stopping Time Thm</td>
<td>(X_n) is nonnegative supermart and (T \leq \infty) is stopping time, then (\mathbb{E}[X_0] \geq \mathbb{E}[X_T]) where (X_\infty = \lim X_n).</td>
</tr>
<tr>
<td>Asymmetric Simple RW w/generating fnct (\varphi(x) := \sum_{k \geq 0} p_k x^k) w/(p_k := \mathbb{P}(\xi_i = k))</td>
<td>(\xi_1, \xi_2, \ldots) iid, (S_n := \xi_1 + \ldots + \xi_n), (\mathbb{P}(\xi_i = 1) = p, \mathbb{P}(\xi_i = -1) = q = 1 - p), with (\frac{1}{2} > p < 1). (\varphi(x) := \left(\frac{q}{p} \right)^x \Rightarrow \varphi(S_n)) is mart. (T_a := \inf { n : S_n = a }), (a < 0 < b) (\Rightarrow \mathbb{P}(T_a < T_b) = \frac{\varphi(b) - \varphi(0)}{\varphi(b) - \varphi(a)}). (a < 0) (\Rightarrow \mathbb{P}(\min_n S_n \leq a) = \mathbb{P}(T_a < \infty) = \left(\frac{1 - p}{p} \right)^-a). (b > 0) (\Rightarrow \mathbb{P}(T_b < \infty) = 1) & (\mathbb{E}[T_b] = \frac{b}{2p-1}).</td>
</tr>
</tbody>
</table>
Let X_1, X_2, \ldots be a martingale with $|X_{n+1} - X_n| \leq M < \infty$.

Let $C := \{ \lim X_n \text{ exists and finite} \}$,

and $D := \{ \lim \sup X_n = +\infty \text{ and } \lim \inf X_n = -\infty \}$. Then, $P(C \cup D) = 1$.
Markov Chains

Example such that sup\(_{n \geq 1} |E[X_n]| < \infty\) but \((X_n)_{n \geq 1}\) are not uniformly integrable

Let \(\Omega = [0, 1]\) with Lebesgue measure, and \(X_n = n \cdot 1_{[0,\frac{1}{n}]}\). Then the \(X_n\) are bounded in \(L^1\), but not uniformly integrable.

Convergence in Probability

A sequence \(\{X_n\}\) of random variables converges in probability towards the random variable \(X\) if for all \(\varepsilon > 0\), we have:
\[
\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0.
\]

Convergence in Distribution

(Weak Convergence):

Let \(X_n, X\) be r.v.s w/CDFs \(F_n\) & \(F\) resp. We say that \(X_n \xrightarrow{d} X\) or \(X_n \Rightarrow X\) if \(F_n(x) \to F(x)\ \forall x\) where \(F\) continuous at \(x\) \((C_F)\). If above holds, then \(\pi_n \xrightarrow{d} \pi\), where \(\pi_n\) and \(\pi\) are distributions of \(X_n/X\) resp.

Convergence Almost Surely

To say that the sequence \(X_n\) converges a.s., almost everywhere, with probability 1, or strongly towards \(X\) means that
\[
P\left(\lim_{n \to \infty} X_n = X\right) = 1.
\]

Markov Chain

An \((\mathcal{F}_n)_{n \geq 0}\)-adapted stochastic process \((X_n)_{n \geq 0}\) taking values in \((\mathcal{S}, \mathcal{S})\) is called a Markov chain if it has the **Markov Property**:
\[
P(X_{n+1} \in B | \mathcal{F}_n) = P(X_{n+1} \in B | X_n) \text{ a.s. for each } B \in \mathcal{S}, n \geq 0.
\]

Markov Chain Transition Probability

We define a Markov chain’s \((X_n)_{n \geq 0}\) transition probabilities \((p_n)_{n \geq 0}\) as
\[
P(X_{n+1} \in B | \mathcal{F}_n) =: p_n(X_n, B) \text{ almost surely for each } n \geq 0 \text{ and } B \in \mathcal{S}.
\]

Transition Matrix

If for all \(\varepsilon > 0\), we have:
\[
\lim_{n \to \infty} P(|X_n - X| > \varepsilon) = 0.
\]

Time Homogeneous Markov Chain

(finite dimensional, continuous state space)

A Markov chain in which the transition probabilities are all the same \(p_n = p\) for all time \(n \geq 0\).

Markov Chain Distributions

\(X_n\) is Markov w/trans. prob. \((p_n)_{n \geq 0}\) & init. dist. \(\mu\), then finite dimensional dist. are given by
\[
P(\{X_0 \in A_0, X_1 \in A_1, \ldots, X_k \in A_k\}) = \int_{A_0} \mu(dx_0) \int_{A_1} p_0(x_0, dx_1) \ldots \int_{A_k} p_k(x_{k-1}, dx_k)
\]

\(\mathcal{F}_n := \sigma(X_0, \ldots, X_n)\). \(\theta : \mathbb{S}^{\mathbb{Z}_+} \to \mathbb{S}^{\mathbb{Z}_+}\) where \(\theta(x_0, x_1, \ldots) = (x_1, x_2, \ldots)\)

Strengthened Markov Prop.

Let \(X_n\) be Markov w/init dist \(\mu\).
\(X_n\) coordinate maps on \((\mathbb{S}^{\mathbb{Z}_+}, \mathbb{S}^{\mathbb{Z}_+}, P_\mu)\)

For any bounded measurable function \(f : \mathbb{S}^{\mathbb{Z}_+} \to \mathbb{R}\), and any \(k \geq 0\),
\[
E_\mu[f \circ \theta^k | \mathcal{F}_k] = E_{X_k}[f] \text{ } P_\mu\text{ a.s.}
\]
<table>
<thead>
<tr>
<th>Chapman-Kolmogorov Equation</th>
<th>(\mathbb{P}x(X{m+n} = z) = \sum_y \mathbb{P}_x(X_m = y) \mathbb{P}_y(X_n = z)) for each (m,n \in \mathbb{Z}^+).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbing</td>
<td>A state (a) is called absorbing if (\mathbb{P}_a(X_1 = a) = 1).</td>
</tr>
<tr>
<td>Strong Markov Property</td>
<td>For any bounded measurable function (f : S^{\mathbb{Z}^+} \to \mathbb{R}) and for any stopping time (T), (\mathbb{E}\mu[f \circ \theta^T \mathcal{F}T] = \mathbb{E}{X_T}[f]) on ({ T < \infty }) (\mathbb{P}\mu)-a.s.</td>
</tr>
<tr>
<td>Reflection Principle</td>
<td>Let (\xi_1, \xi_2, \ldots) be iid w/distribution symmetric about 0. Let (S_n = \xi_1 + \ldots + \xi_n). If (a > 0), then (\mathbb{P}(\sup_{m \leq n} S_m > a) \leq 2\mathbb{P}(S_n > a)).</td>
</tr>
<tr>
<td>(k)th Return to (y)</td>
<td>Let (T^y_0 := 0), and for (k \geq 1), let (T^y_k := \inf{ n > T^y_{k-1} : X_n = y }), the time of the (k)th return to (y).</td>
</tr>
<tr>
<td>(\rho_{yz})</td>
<td>(\mathbb{P}_y(T_z < \infty))</td>
</tr>
<tr>
<td>Finite (k)th Return Prob. to (z) starting at (y) :</td>
<td>For (k \geq 1), (\mathbb{P}y(T^y_z < \infty) = \rho{yz}\rho_{zz}^{k-1}).</td>
</tr>
<tr>
<td>Recurrent</td>
<td>A state (y \in S) is called recurrent if (\rho_{yy} = 1) and is called transient if (\rho_{yy} < 1).</td>
</tr>
<tr>
<td>If (y) is recurrent, then</td>
<td>(\lim_{k \to \infty} \mathbb{P}y(T^y_z < \infty) = \lim{k \to \infty} \rho_{zy}^k = 1).</td>
</tr>
<tr>
<td>If (y) is transient, then (P_y(X_n = y \text{ i.o.})) =</td>
<td>(= \lim_{k \to \infty} \rho_{zy}^k = 0).</td>
</tr>
<tr>
<td>Total number of visits to (y) by the Markov chain (X_n) is notated as (N(y) :=)</td>
<td>(\sum_{n=1}^{\infty} 1_{{X_n = y}}).</td>
</tr>
</tbody>
</table>
A state \(x \) leads to, or is accessible from another state \(y \neq x \), denoted by \(x \rightarrow y \), if:

\[
\rho_{xy} > 0 \text{ (or equivalently, for some } n \geq 1, p^n(x,y) > 0).
\]

Formally, \(x \rightarrow y \) if \(\exists n \geq 0 \) such that \(\mathbb{P}(X_{n+} = y | X_0 = x) = p_{xy}^{(n+)} > 0 \).

Communicating Class

"\(\leftrightarrow \)" is an equivalence relation.

Therefore, there is a partition \(C_1, C_2 \) of \(S \), with each block \(C_i \) being referred to as a communicating class.

Irreducible Subset

A closed subset \(A \subseteq S \) is called irreducible if \(x \leftrightarrow y \) for all \(x, y \in A \).

By definition, each class is irreducible.

Irreducible Markov Chain

Markov chain is irreducible if it is possible to get to any state from any state. Formally, Markov chain is irreducible if its state space is a single communicating class, i.e., \(x \leftrightarrow y, \forall x, y \in S \).

Properties when \(x \) is recurrent and \(\rho_{xy} > 0 \)

i) \(\rho_{yx} = 1 \), ii) \(y \) is recurrent, iii) \(\rho_{yx} = 1 \).

Closed Subset of States

We call a subset of states \(A \subseteq S \) closed if

\[
\rho_{xy} = 0 \text{ for all } x \in A \text{ and } y \notin A \]

Is a recurrent class \(C \) closed, open, neither?

Closed.

:-(

In a finite state Markov chain, a class is recurrent (respectively transient) if and only if:

Birth & Death Chains \(X_n \) on \(\{0, 1, 2, \ldots \} \).

\[
p_i := p(i, i + 1), \quad q_i := p(i, i - 1), \quad r_i := p(i, i)
\]

Let: \(\varphi(0) := 0, \varphi(1) := 1, \) and \(\varphi(k + 1) = ? \)

Birth Death Chain: the state 0 is recurrent if and only if

For irreducible: \(\varphi(m + 1) = \varphi(m) + \prod_{j=1}^{m} \frac{q_j}{p_j} \) for \(m \geq 1 \),

and \(\varphi(n) = \sum_{m=0}^{n-1} \prod_{j=1}^{m} \frac{q_j}{p_j} \) for \(n \geq 1 \).

Birth Death Chain:

the state 0 is recurrent if and only if

\[
\varphi(M) \rightarrow \infty \text{ as } M \rightarrow \infty, \text{ that is:} \\
\varphi(\infty) = \sum_{m=0}^{\infty} \prod_{j=1}^{m} \frac{q_j}{p_j} = \infty. \\
\text{If } \varphi(\infty) < \infty, \text{ then } \mathbb{P}(T_0 = \infty) = \frac{\varphi(x)}{\varphi(\infty)}.
\]
| Stationary/Invariant Measure | \(\mu \) is a stationary/invariant distribution that is a probability measure.
|\(\mu P = \mu(y) = \sum_{x \in S} \mu(x)p(x,y) \) (\(\mu \) is left eigenvector of \(p \)). The last equation says \(\mathbb{P}_\mu(X_1 = y) = \mu(y) \). Using the Markov property and induction, we have \(\mathbb{P}_\mu(X_n = y) = \mu(y) \forall n \geq 1 \). |
| Stationary/Invariant Distribution | \(\pi \) is a stationary/invariant measure that is a probability measure.
|\(\pi P = \pi(y) = \sum_{x \in S} \pi(x)p(x,y) \), and \(\sum_{x \in S} \pi(x) = 1 \). It represents a possible equilibrium for the chain. |
| Suppose \(p \) is irreducible. A necessary and sufficient condition for the existence of a reversible measure is | i) \(p(x,y) > 0 \) implies \(p(y,x) > 0 \), and
ii) for any loop \(x_0, \ldots, x_n = x_0 \)
with \(\prod_{1 \leq i \leq n} p(x_i, x_{i-1}) > 0 \), \(\prod_{i=1}^n \frac{p(x_{i+1}, x_i)}{p(x_i, x_{i+1})} = 1 \). |
| Recurrent Time in \(y \) | \(\mu_s(y) := \) Define \(\mu_s(y) \) as the expected time spent in \(y \) between visits to \(x \). |
| Positive Recurrent | \(\mathbb{E}_x[T_x] = \sum_{n=1}^{\infty} n \mathbb{P}(T_x = n) = \sum_{y \in S} \mu_s(y) < \infty \), and \(\mathbb{P}_x(T_x < \infty) = 1 \).
Positive Recurrent \(\Rightarrow \) Recurrent |
| Null-Recurrent | \(x \in S \) is said to be null recurrent if \(\mathbb{P}_x(T_x < \infty) = 1 \), but \(\mathbb{E}_x[T_x] = \infty \).
If \(\{X_n\} \) is recurrent but not null recurrent then it is called positive recurrent. \(X_n \) is null recurrent if all \(X_i \) are null recurrent. |
| If a chain is finite and irreducible, then there exists: | A unique stationary/invariant distribution \(\pi \), and it is positive recurrent. |
| If \(\{X_n\} \) is positive recurrent, then for every \(x, y \in S \) : | \(\lim_{n \to \infty} p^n(x,y) = \pi(y) > 0 \) where \(\pi : S \to [0,1] \) is the stationary/invariant distribution.
\(p^n(x,y) := \frac{1}{\pi} \sum_{i=S} \pi(X_n = y|X_0 = x) \)
It’s unique! |
| For an irreducible, positive recurrent Markov chain, what quality does the stat/invariant distribution \(\pi \) have? | \(\ast \) Stat. measures are unique up to constant multiples.
\(\ast \) \(\mu \) a stat. measure \(\Rightarrow \mu(x) > 0, \forall x \). \(\ast \) Stat. dist. \(\pi \), if exists, is unique
\(\ast \) Stat. measure has infinite mass \(\Rightarrow \) Stat. dist. \(\pi \) cannot exist. |
| For an irreducible and recurrent chain, the following are true. | If \(\pi \) is a stat/invariant distribution of a Markov chain and \(\pi(x) > 0 \), then \(x \) is recurrent. |
For an irreducible Markov chain, the following are equivalent.

i) There exists \(x \in S \) that is positive recurrent.

ii) There exists a stationary distribution \(\pi \).

iii) Every state is positive recurrent.

If \(p \) irreducible and has stat. dist. \(\pi \), then any other stationary measure is a multiple of \(\pi \).

Doubly Stochastic

Prob. transition matrix \(p_{ij} = P(X_{n+1} = j | X_n = i) \)

is doubly stochastic if \(\Sigma_j p_{ij} = 1 \ \forall j \) and \(\Sigma_i p_{ij} = 1 \ \forall i \).

Uniform distribution is stat. dist. of \(p \) \(\iff \) \(p \) is doubly stochastic.

Stationary Sequence

\((X_n)_{n \geq 0}\) is stationary if \((X_n, X_{n+1}, \ldots) \sim (X_0, X_1, \ldots)\), \(\forall n \geq 0 \)

or equivalently, \((X_n, X_{n+1}, \ldots, X_{n+m}) \sim (X_0, X_1, \ldots, X_m)\), \(\forall n, m \geq 0 \)

Exchangeable sequences are stationary.

Reversible Measure

measure \(\mu \) such that \(\mu(x)p(x,y) = \mu(y)p(y,x) \).

Is always stationary since \(\Sigma_{x \in S} \mu(x)p(x,y) = \Sigma_{x \in S} \mu(y)p(y,x) = \mu(y) \),

i.e., it is invariant under multiplication by \(p \).

Aperiodic Markov Chain

For \(x \), \(I_x := \{n \geq 1 : p_n(x,x) > 0\} \). Let \(d_x \) be the GCD of \(I_x \)

\(x \) has period \(d_x \). If every state of a Markov chain has period 1, then we call the chain aperiodic.

What could cause \(d_x = d_y \)?

If \(x \leftrightarrow y \).

In other words, if \(\rho_{xy} > 0 \) and \(\rho_{yx} > 0 \).

If \(d_x = 1 \), then \(\exists n_0 \geq 1 \) such that:

\(p^n(x,x) > 0 \) for all \(n \geq n_0 \).

e.g., if \(I_x = \{5,7\} \).

An irreducible aperiodic Markov chain has the following property: for each \(x, y \in S \), there exists:

\(n_0 = n_0(x,y) \geq 1 \) such that \(p^n(x,y) > 0 \) for all \(n \geq n_0 \).

Irreducible Aperiodic Markov \(X_n \)

is Null Recurrent if:

\(\langle X_n \rangle \) is recurrent and \(\lim_{n \to \infty} p_n(x,y) = 0 \) for all \(x, y \in S \).

Markov Chain Convergence Theorem

Consider irreducible, aperiodic Markov with stat. dist. \(\pi \)

Then, \(p^n(x,y) \to \pi(y) \) as \(n \to \infty \), for all \(x, y \in S \).
Total Variation Distance

Chain is coupled if:

i) marginals \(X_n \) and \(Y_n \) are Markov w/same \(p \) & init. dist. \(\mu, \nu \) resp.

ii) \(X_n = Y_n \) for \(n \geq T \), where \(T := \inf \{ n \geq 0 : X_n = Y_n \} \).

For two probability measures \(\mu, \nu \) on \(S \), their total variation distance is given by:

\[
d_{TV}(\mu, \nu) := \frac{1}{2} \sum_{x \in S} |\mu(x) - \nu(x)| = \sup_{A \subseteq S} |\mu(A) - \nu(A)|
\]

Coupled Markov Chain.

Let \(\mu, \nu \) be prob. measures on countable \(S \), & \((X_n, Y_n)_{n \geq 0} \) on product space \(S \times S \).

Markov Recurrent Corollary

A state \(x \in S \) is recurrent \(\iff \)

Asymptotic Density of Returns

where \(N_n(y) := \sum_{m=1}^{n} 1 \{ x_m = y \} \), is # visits to \(y \) by \(n \). Let \(y \in S \) recurrent. Then \(\lim \limits_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{E_y[T_y]} 1_{T_y < \infty} \P - a.s. \)

For a Markov chain and any \(x, y \in S \),

if \(N(y) := \sum_{n=1}^{\infty} 1 \{ x_n = y \} \) is total # visits to \(y \), then we have \(E_x[N(y)] = \frac{p_{xy}}{1 - \rho_{yx}} = \sum_{n=1}^{\infty} p^n(x,y) \)

(where we interpret \(\frac{0}{0} = 0 \), \(\frac{c}{0} = +\infty \) for \(c > 0 \))

For a Markov chain and \(x, y \in S \),

if \(N(y) := \sum_{n=1}^{\infty} 1 \{ x_n = y \} \) is total # visits to \(y \), then we have \(P_x(N(y) = k) = \rho_{xy} \rho_{yy}^{k-1} (1 - \rho_{yy}^k) \)

Consider Markov \(X_n \) started from stat. dist. \(\pi \) & trans. matrix \(p \).

Fix \(N \geq 1 \) & \(Y_n := X_{N-n} \) for \(n = 0, 1, \ldots, N \). Then:

Birth Death Chain:

For any \(c \in R \), let \(T_c = \inf \{ n \geq 1 : X_n = c \} \),

If \(a < x < b \), then: \(\P_x(T_a < T_b) = \frac{\phi(b) - \phi(x)}{\phi(b) - \phi(a)} \)

\((Y_n)_{0 \leq n \leq N}\) is a time-homogeneous Markov chain with initial distribution \(\pi \) and transition matrix \(q \) given by \(q(x,y) = \frac{\pi(y)q(y,x)}{\pi(x)} \)

\(\frac{\phi(b) - \phi(x)}{\phi(b) - \phi(a)} \) and

\(\P_x(T_b < T_a) = \frac{\phi(x) - \phi(a)}{\phi(b) - \phi(a)} \)
Stationary/Invariant Measure Theorem
Let x be a recurrent state. Then: $\mu_x(y) := \mathbb{E}_x \left[\sum_{n=0}^{T_x-1} 1_{\{X_n = y\}} \right] = \sum_{n=0}^{\infty} \mathbb{P}_x(X_n = y, T_x > n)$, is a stationary measure.

Pairs of states x, y communicate, denoted by $x \leftrightarrow y$, if:
$x \rightarrow y \text{ and } y \rightarrow x$.
In other words, if $\rho_{xy} > 0$ and $\rho_{yx} > 0$.

Suppose Markov irreducible & recurrent.
Let μ be stat. measure $w/\mu(y) > 0, \forall y \in S$.
If ν is another stat. measure, then
$\mu = c\nu$ for some $c > 0$.

Stat./Invariant Distribution π:
Suppose that S is finite and p is irreducible.
Then:
there exists a unique solution to $\pi p = \pi$
with $\sum_{i \in S} \pi(i) = 1$ and $\pi(i) > 0$ for all $i \in S$.

On a Markov chain, if C is a finite closed set, then it contains...
at least one recurrent state.
In particular, a finite closed class C is recurrent.

Calculating Stat./Invariant Distribution
If p is irreducible and has stat. distribution π,
then $\pi(x) = \frac{1}{\mathbb{E}_x[T_x]}$.
The Markov chain X_n is recurrent.

Birth Death Chain: If S irreducible, $\varphi \geq 0$
$w/E_x[\varphi(X_1)] \leq \varphi(x)$ for $x \notin F$ (finite set),
and $\lim_{x \to \infty} \varphi(x) \to \infty$ as $x \to \infty$, then: