1 Nuts and bolts

1. Read the following sections before workshop tomorrow:
 - 6395 The fundamental theorem of calculus
 - 6403 Volume by disks

2. Office hours this week: MW 11-12, and F 12-1.

2 What’s happening today

1. Heavy lifting – why the fundamental theorem of calculus is true – the mean value theorem gives the link between the derivative and the integral.

2. Application of definite integrals and the fundamental theorem – finding volumes using the “disk method”

3 The fundamental theorem of calculus

If \(F'(x) = f(x) \) (that is, if \(F(x) \) is an antiderivative for \(f(x) \)) on \([a, b]\), then

\[
\int_{a}^{b} f(x) \, dx = F(b) - F(a).
\]

We used this on Monday to calculate some definite integrals – much easier than finding these values directly from the definition.

This theorem is true for continuous functions \(f(x) \). Why is it true?

4 Mean value theorem

If \(f(x) \) is continuous on \([a, b]\) and has a derivative on \((a, b)\), then there is a number \(c \) with \(a < c < b \) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]
On Monday, we saw the geometric meaning of that statement, and we calculated those numbers c explicitly in an example. Notice how essential the hypotheses are:

Example 1. Let $f(x) = |x|$ on $[-1, 1]$. Is the conclusion of the mean value theorem true for this function?

5 Warmup to the proof of the mean value theorem

Mean value theorem, Junior. (also known as Rolle’s theorem) If $f(x)$ is continuous on $[a, b]$ and has a derivative on (a, b), and $f(a) = f(b) = 0$, then there is a number c with $a < c < b$ such that $f'(c) = 0$.

6 Now we use junior to prove the big mean value theorem

The idea behind the proof: Apply Junior to “the function minus the line”.

![Graph of a function and a line representing the mean value theorem](image-url)
Write a function of \(x \) that tells you the difference between \(f(x) \) and the line shown. That function is zero at the endpoints, and we can apply Junior.

The line is described by

\[
y - f(a) = \frac{f(b) - f(a)}{b - a} (x - a).
\]

Write

\[L(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a). \]

Now consider this function:

\[h(x) = f(x) - L(x). \]

This is the difference between the function \(f(x) \) and the line.

\[
h(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} (x - a).
\]

Notice that \(h(a) = 0 \), \(h(b) = 0 \), and \(h \) is differentiable since \(f(x) \) and \(L(x) \) are.

Then Junior says that there is a \(c \) with \(a < c < b \) where \(h'(c) = 0 \).

But \(h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \), so at that \(c \) we have

\[
0 = f'(c) - \frac{f(b) - f(a)}{b - a},
\]

which proves the big mean value theorem.

Now, how could that possibly have anything to do with the fundamental theorem of calculus?

Let’s remember the definition of the definite integral: for a continuous function \(f(x) \) on \([a, b]\), we have

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^n \frac{b - a}{n} f(x_k^*),
\]

where \(x_k^* \) is the midpoint of the \(k \)th subinterval of length \(\frac{b - a}{n} \) on \([a, b]\).

It turns out that this limit exists and equals the same number if we allow \(x_k^* \) to be ANY NUMBER in the \(k \)th subinterval.

We used the midpoint of each subinterval before, because that makes the (painful but direct) calculations work out nicely.

7 Proof of the fundamental theorem:

Write \(a = x_0, x_1, \ldots, x_{n-1}, x_n = b \) for the endpoints of the \(n \) subintervals of width \(\frac{b - a}{n} \).

Let’s use the mean value theorem on the function \(F(x) \) on each subinterval \([x_{k-1}, x_k]\).
The mean value theorem says that there is a number \(x^*_k \) between \(x_k \) and \(x_{k-1} \) such that

\[
F'(x^*_k) = \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}} = \frac{F(x_k) - F(x_{k-1})}{\frac{b-a}{n}}.
\]

Now go back to the definition of the definite integral, using all of these points that the mean value theorem provides:

\[
\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^n \frac{b-a}{n} \cdot f(x^*_k)
\]

\[
= \lim_{n \to \infty} \sum_{k=1}^n \frac{b-a}{n} \cdot F'(x^*_k)
\]

\[
= \lim_{n \to \infty} \sum_{k=1}^n \frac{b-a}{n} \cdot \frac{F(x_k) - F(x_{k-1})}{\frac{b-a}{n}}
\]

\[
= \lim_{n \to \infty} \sum_{k=1}^n F(x_k) - F(x_{k-1})
\]

\[
= \lim_{n \to \infty} F(b) - F(a) = F(b) - F(a).
\]

8 Application: using definite integrals to calculate volumes

Let \(f(x) \) be a function that is continuous on \([a, b]\). By rotating the graph of \(f(x) \) around the \(x \)-axis, we describe a solid, whose volume is

\[
V = \lim_{n \to \infty} \sum_{k=1}^n \frac{b-a}{n} \pi f(x^*_k)^2 = \int_a^b \pi f(x)^2 \, dx.
\]

Example 2. Find the volume of a cone of base radius \(r \) and height \(h \).

Example 3. Find the volume of a sphere of radius \(r \).