To make sense of the concept of eigenvalue, let’s think of $n \times n$ matrices A as mapping n-dimensional vectors to other n-dimensional vectors.

Examples when $n = 2$:

Example a.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Example b.

$$B = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

If A is an $n \times n$ matrix, then the equation

$$Av = \lambda v$$

has nontrivial solutions v if and only if

$$\det(A - \lambda I) = 0.$$

The expression $\det(A - \lambda I)$ is called the characteristic polynomial of A. Its roots are the eigenvalues of A.

Example 2. Find the eigenvalues, and corresponding eigenvectors, for the matrix

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}.$$
Example 3. Find the eigenvalues, and corresponding eigenvectors, for the matrix

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{bmatrix}.
\]

What will this have to do with DE?