1. (20 points) Find an equation for the plane containing the line parametrized by \((x, y, z) = c_1(t) = (2 + t, 2t, 1 - t)\) and the line parametrized by \((x, y, z) = c_2(t) = (3, t - 1, 2t - 6)\). Write your answer in the form \(z = Ax + By + C\).

Solution: The answer is \(z = -5x + 2y + 11\).

We get this using the equation for the plane

\[0 = \langle A, B, C \rangle \cdot \langle x - x_0, y - y_0, z - z_0 \rangle,\]

where \(\langle A, B, C \rangle\) is the normal vector, and \((x_0, y_0, z_0)\) is a point on the plane.

Any point on one of the lines is also a point on the plane, so we can use \(c_1(0) = (2, 0, 1)\) as \((x_0, y_0, z_0)\). The simplest way to get the normal vector is to realize that the coefficients of the \(t\)'s in the equations for \(c_1\) and \(c_2\) give vectors that are parallel to the plane, so there cross product will be the normal vector to the plane. That is, we have two vectors

\[v_1 = \langle 1, 2, -1 \rangle\]
\[v_2 = \langle 0, 1, 2 \rangle.\]

The normal vector is then their cross product,

\[
\begin{vmatrix}
i & j & k \\
1 & 2 & -1 \\
0 & 1 & 2
\end{vmatrix},
\]

which is

\[= \langle 2 \cdot 2 - (-1) \cdot 1, -(1 \cdot 2), 1 \cdot 1 - 2 \cdot 0 \rangle = \langle 5, -2, 1 \rangle.\]

So the equation of the plane is

\[\langle 5, -2, 1 \rangle \cdot \langle x - 2, y, z - 1 \rangle = 0\]

which becomes

\[5x - 10 - 2y + z - 1 = 0\]

which is

\[z = -5x + 2y + 11.\]

Grading Scheme:

Basically, 6 points for valid vectors, 2 points for a valid point on the plane, 4 points for the cross product (both knowing to use it and using it correctly), 4 points for using a valid equation for the plane, 4 points for the correct answer.
2. (30 points) Let \(g(p, s) \) be a function that gives your grade on exams for a course as a function \(p \), the number of hours partying, and \(s \), the number of hours studying each week. For your first exam, you partied 20 hours and studied 15 hours each week, and you received a 2.0, which is a C. Hence, \(g(20, 15) = 2 \). For your second exam, you slightly increased your studying and discovered that \(\frac{\partial g}{\partial s}(20, 15) = 0.3 \). For your third exam, you slightly increased your partying and discovered that \(\frac{\partial g}{\partial p}(20, 15) = -0.5 \). We assume that \(g(p, s) \) is a differentiable function.

(i) (12 points) What is the directional derivative \(D_u g(20, 15) \) where \(u \) is the unit vector pointing in the direction of \((-1, -1)\)? Interpret your answer in terms of the effect of partying and studying on your grade.

Solution: Since \(u \) is a unit vector, we need to normalize \((-1, -1)\), i.e.,

\[
 u = \frac{(-1, -1)}{\sqrt{(-1)^2 + (-1)^2}} = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right).
\]

Also,

\[
 \nabla g(20, 15) = \left(\frac{\partial g}{\partial p}(20, 15), \frac{\partial g}{\partial s}(20, 15) \right) = (-0.5, 0.3).
\]

Hence,

\[
 D_u g(20, 15) = \nabla g(20, 15) \cdot u = \langle -0.5, 0.3 \rangle \cdot \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right) = \frac{\sqrt{2}}{10}.
\]

This means that if you slightly decrease both partying and studying by the same amount, your grade increases at rate \(\frac{\sqrt{2}}{10} \).

I assigned 3 points for normalizing \(u \), 3 points for "correct use" of partial derivatives, 2 points for knowing the definition of the directional derivative, 2 points for calculation, and 2 points for interpretation of the result.

(ii) (13 points) For your final exam, you want to slightly increase your partying and adjust your studying to maintain a grade of 2.0. For every hour of extra partying how much should you increase or decrease your studying so that your grade stays constant at 2.0?

Solution: Since the gradient is perpendicular to the level curve at \((20, 15)\), the direction must be perpendicular to \((-0.5, 0.3)\). Let \(a \) denote number of hours of studying you need to increase or decrease for every hour of extra partying to maintain your current grade. Then

\[
 (-0.5, 0.3) \cdot (1, a) = 0.
\]

Solving for \(a \), we get \(a = \frac{2}{3} \) hours or 100 minutes.

I gave 10 points for knowing that you need to move orthogonal to the gradient and setting up the equation correctly, and 3 points for calculation.
(Problem 2 continued)

(iii) (5 points) Below are four possible level curve plots of \(g(p, s) \) (with \(p \) on the \(x \)-axis and \(s \) on the \(y \)-axis). Which of the following could be the level curve plot of \(g(p, s) \)? (Be sure to explain your answer.)

![Graph B](image)

Solution: Graph B could be the level curve plot of \(g(p, s) \) because only in B, \((-0.5, 0.3)\) seems perpendicular to the level curve at \((20,15)\).

I gave 2 points for choosing B, and 3 points for explanation.

3. (20 points) Let \(g(p, s) \) be the function from problem 2 that gives your grade on exams as a function \(p \), the number of hours partying, and \(s \), the number of hours studying each week. Recall that \(g(20, 15) = 2 \), \(\frac{\partial g}{\partial p}(20, 15) = 0.3 \), and \(\frac{\partial g}{\partial s}(20, 15) = -0.5 \).

(i) (13 points) Find a linear approximation to \(g(p, s) \) around \((p, s) = (20, 15)\).

Solution:

\[
L(p, s) = g(20, 15) + \left[\frac{\partial g}{\partial p}(20, 15) \right] (p - 20) + \left[\frac{\partial g}{\partial s}(20, 15) \right] (s - 15)
\]

\[
= 2 - 0.5(p - 20) + 0.3(s - 15).
\]

I assigned 10 points for knowing the formula, and 3 points for the rest.

(ii) (7 points) Use the linear approximation to predict your grade should you party 21 hours and study 17 hours.

Solution:

\[
L(21, 17) = 2 - 0.5(21 - 20) + 0.3(2) = 2.1.
\]

I assigned 7 points for calculation. If the only mistake one made in part (i) was switching 0.3 and -0.5 around, I did not penalize them for getting 1.3 for an answer.
4. (30 points) Let $h(u, v)$ be a differentiable function with
\[
\frac{\partial h}{\partial u}(9, 7) = 2
\]
and
\[
\frac{\partial h}{\partial v}(9, 7) = -1.
\]

Let $z(x, y) = h\left(f(x, y), g(x, y)\right)$ where $u = f(x, y) = x^2 - y^2$ and $v = g(x, y) = 2xy - 33$. Find $\frac{\partial z}{\partial x}(5, 4)$ and $\frac{\partial z}{\partial y}(5, 4)$.

Solution: Chain rule gives
\[
\frac{\partial z}{\partial x} = \frac{\partial h}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial h}{\partial v} \frac{\partial v}{\partial x}
\]
where
\[
u = f(x, y) = x^2 - y^2 	ext{ and } v = g(x, y) = 2xy - 33
\]

At $x = 5$ and $y = 4$, we have $u = 9$ and $v = 7$.

Therefore,
\[
\frac{\partial z}{\partial x}(5, 4) = \frac{\partial h}{\partial u}(9, 7) \frac{\partial u}{\partial x}(5, 4) + \frac{\partial h}{\partial v}(9, 7) \frac{\partial v}{\partial x}(5, 4)
\]
\[
\frac{\partial h}{\partial u}(9, 7) = 2 \text{ and } \frac{\partial h}{\partial v}(9, 7) = -1 \text{ are given}
\]
\[
\frac{\partial u}{\partial x}(x, y) = 2x \text{ and } \frac{\partial v}{\partial x}(x, y) = 2y
\]
which gives $\frac{\partial u}{\partial x}(5, 4) = 10$ and $\frac{\partial v}{\partial x}(5, 4) = 8$.

Finally
\[
\frac{\partial z}{\partial x}(5, 4) = (2)(10) + (-1)(8) = 12
\]

Similarly
\[
\frac{\partial z}{\partial y}(5, 4) = \frac{\partial h}{\partial u}(9, 7) \frac{\partial u}{\partial y}(5, 4) + \frac{\partial h}{\partial v}(9, 7) \frac{\partial v}{\partial y}(5, 4)
\]
which gives
\[
\frac{\partial z}{\partial y}(5, 4) = -26
\]
5. (15 points) Where does the tangent plane at \((x, y, z) = (1, 2, -5)\) to the graph \(z = f(x, y)\) of \(f(x, y) = \frac{2x^2}{y} - 3xy\) meet the \(z\)-axis? (Your answer will be a point of the form \((0, 0, a)\) or \(a\vec{k}\).)

Solution: Tangent plane to the graph of the function \(f(x, y)\) at the point \((a, b)\) (if it exists) is of the form

\[
z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)
\]

\[
\frac{\partial f}{\partial x}(x, y) = \frac{4x}{y} - 3y
\]

and

This implies

\[
\frac{\partial f}{\partial x}(1, 2) = -4
\]

\[
\frac{\partial f}{\partial x}(x, y) = -\frac{2x^2}{y^2} - 3x
\]

which gives \(\frac{\partial f}{\partial x}(1, 2) = -\frac{7}{2}\)

Therefore, the tangent plane

\[
z = -4x - \frac{7}{2}y + 6
\]

Tangent plane meets \(Z\)-axis when \(x = 0\) and \(y = 0\), hence at \((0, 0, 6)\) or \(6k\).
6. (25 points) Consider the hyperboloid given by \(g(x, y, z) = 2x^2 + 3y^2 - z^2 = 7 \).

(i) (15 points) Find the tangent plane to the hyperboloid at the point \((x, y, z) = (2, 1, -2)\).

Solution: The answer is the plane

\[
8x + 6y + 4z - 14 = 0.
\]

Here, we use the fact that the tangent plane at a point \((x_0, y_0, z_0)\) to a surface (defined as a level curve such as \(g(x, y, z) = c\)) is given by

\[
\nabla g(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0.
\]

We know that \((x_0, y_0, z_0) = (2, 1, -2)\), so we merely need to find the gradient.

We have in general that

\[
\nabla g(x, y, z) = \langle \partial g/\partial x, \partial g/\partial y, \partial g/\partial z \rangle,
\]

so in our case this is

\[
\nabla g(x, y, z) = \langle 4x, 6y, -2z \rangle.
\]

So \(\nabla g(2, 1, -2) = \langle 8, 6, 4 \rangle\).

So the equation for our plane is

\[
\langle 8, 6, 4 \rangle \cdot \langle x - 2, y - 1, z + 2 \rangle = 0,
\]

which is

\[
8x + 6y + 4z - 14 = 0.
\]

Grading Scheme:
We gave 8 points for the correct determination of the normal vector (i.e. finding the gradient as above), and 7 points for using a valid equation for the plane.

(ii) (10 points) Can the tangent plane to the hyperboloid ever be horizontal? If so, find a point on the hyperboloid where the tangent plane is horizontal. If not, explain why not.

Solution: The answer is no, there is no point on the hyperboloid that has a horizontal tangent plane.

Having a horizontal tangent plane would mean that in the equation for the tangent plane, \(Ax + By + Cz + D = 0\), \(A\) and \(B\) are zero and \(C\) is not.

Thus, this means that for

\[
\langle A, B, C \rangle = \nabla g(x_0, y_0, z_0) = \langle 4x_0, 6y_0, -2z_0 \rangle,
\]

we need \(x_0 = y_0 = 0\). But there is no such point on the hyperboloid: we would need to find \(z_0\) so that \(2 \cdot 0 + 3 \cdot 0 - z_0^2 = 7\), or that \(z_0 = \sqrt{-7}\), which is impossible.

Grading Scheme:
Aside from correct answers as above, I gave credit for knowing what horizontal would mean for a tangent plane (1 or 2 points), and for answers that, while incorrect, would have lead to the correct answer eventually.