Today: 2.3 Differentiation

What does it mean for a function of several variables to be differentiable?

For $f : \mathbb{R}^2 \to \mathbb{R}$, what does it mean for $f(x, y)$ to have a derivative at the point (x_0, y_0)?

Intuitively, we would like there to be a well-defined plane that is tangent to the graph of f at (x_0, y_0). In other words, the graph of f should have no sharp corners or folds at that point.

On the way to understanding what that means precisely, we introduce the notion of partial derivative.

Partial derivatives: definition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a real-valued function of n variables. Write $z = f(x_1, x_2, \ldots, x_n)$.

The jth partial derivative of f, for $j = 1, 2, \ldots, n$ is the function $\frac{\partial f}{\partial x_j} : \mathbb{R}^n \to \mathbb{R}$ defined by

$$\frac{\partial f}{\partial x_j}(x_1, x_2, \ldots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, \ldots, x_j + h, \ldots, x_n) - f(x_1, x_2, \ldots, x_n)}{h}$$

Partial derivatives: visual intuition

Last time, we discussed level sets and sections as tools to understand graphs of functions of several variables.

For $f : \mathbb{R}^2 \to \mathbb{R}$, a section of its graph is the intersection with a vertical plane, usually with either x or y fixed. That intersection is a curve in a plane.

Think of partial derivatives as finding slopes of tangent lines (via one-variable derivatives) to those sections in the vertical planes.

We can write that definition in vector notation:

$$\frac{\partial f}{\partial x_j}(x) = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$

Usually we work with functions of two variables $z = f(x, y)$, in which case we can write

$$\frac{\partial f}{\partial x}(x_0, y_0) = f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

and

$$\frac{\partial f}{\partial y}(x_0, y_0) = f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$
Example 1. a. If \(f(x, y) = x \cos(xy) \), find \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \).
b. Then, evaluate those functions at \((0, 0)\) and \((\sqrt{2}, -\sqrt{2})\).
c. Then, use this information to find tangent planes to the graph of \(f \) at \((0, 0)\) and \((\sqrt{2}, -\sqrt{2})\).

Provisionally, let us say that the tangent plane to the graph of \(f(x, y) \) at \((x_0, y_0)\) is given by the equation
\[
z = f(x_0, y_0) + \left[\frac{\partial f}{\partial x}(x_0, y_0) \right] (x - x_0) + \left[\frac{\partial f}{\partial y}(x_0, y_0) \right] (y - y_0).
\]

That type of example is why we said “Provisionally” before, and that is why partial derivatives on their own are not enough to define differentiability for a function of several variables.

We don’t want to call a function differentiable unless that plane we defined is a good approximation to the graph of the function, as follows:

The function \(f(x, y) \) is differentiable at \((x_0, y_0)\) if the partial derivatives exist at that point and if
\[
\lim_{(x, y) \to (x_0, y_0)} \frac{f(x, y) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) - \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)}{||(x, y) - (x_0, y_0)||} = 0
\]
as \((x, y) \to (x_0, y_0)\).

Example 2. a. If \(f(x, y) = x^\frac{1}{2} - y^\frac{1}{2} \), find \(\frac{\partial f}{\partial x}(0, 0) \) and \(\frac{\partial f}{\partial y}(0, 0) \).
b. What would that information say about the tangent plane to the graph of \(f \) at \((0, 0)\)?

On Friday, we will want to extend this notion of differentiability to functions \(f : \mathbb{R}^n \to \mathbb{R}^m \).

To do that, we will consider the \(m \times n \) matrix of partial derivatives \(Df \):
\[
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]

Example 3. Let \(f(x, y, z) = (e^{yz}, e^{xz}, e^{xy}) \). Find \(Df \).