MATH 2374.020 – Lecture 8 – 2/15/08

Place HW 03 in folders in back center of the room.

HW 04: due Fri. 2/22
2.4 #2, 16, 18
2.5 #2e, 5d, 6d, 11
2.6 #3a, 4b, 7b, 13a, 16
Sample final #7, 9a

Quiz 09: due Wed. 2/20, 9 a.m.
Quiz 10: due Fri. 2/22, 9 a.m.
Exam 1: 2/27. Will cover chapters 1 and 2. That is, through the material that we cover today and that you hand in HW for next Friday.

Today:

1. Review chain rule
2. Gradient and directional derivative

Example 4 from Wed. Let \(f : \mathbb{R}^3 \to \mathbb{R}^3 \) be given by \(f(x, y, z) = (-y, x, -z) \). Let \(c(t) = (1, t, \sin t) \).

Find \(D(f \circ c)(0) \) using the chain rule, and interpret geometrically.

Notes

• I will occasionally use the notation \(D_v f(x) \) for this quantity.
• This is defined for any vector \(\mathbf{v} \), but we usually take \(\mathbf{v} \) to be a unit vector. Why?
• If \(f \) is differentiable, then all directional derivatives exist, and
 \[D_v f(x) = \nabla f(x) \cdot \mathbf{v}. \]
• For \(f : \mathbb{R}^2 \to \mathbb{R} \), think of intersecting the graph with a vertical plane through \(x \) and parallel to \(\mathbf{v} \).

Directional derivatives

When we calculate the partial derivative of a function \(f : \mathbb{R}^3 \to \mathbb{R} \), we are asking for the rate of change of the function as the input moves in the \(i \) direction; that is, in the direction of the positive \(x \)-axis.

We can investigate the rate of change of a function as the input moves in any direction.

Definition. For \(f : \mathbb{R}^n \to \mathbb{R} \), the directional derivative of \(f \) at \(x \) in the direction of \(\mathbf{v} \) is

\[
\frac{d}{dt} f(x + tv),
\]
evaluated at \(t = 0 \), if the limit exists.
Example 1. Let \(f(x, y) = \sin x + \sin y \). Find the directional derivative of \(f \) at the point:

1. \(\left(\frac{\pi}{2}, -\frac{\pi}{2} \right) \) in the direction of \(v = \frac{1}{\sqrt{2}}(1, 1) \).
2. \((0, 0) \) in the direction of \(v = (\cos \theta, \sin \theta) \) for \(0 \leq \theta \leq 2\pi \).

Theorem. Let \(f : \mathbb{R}^3 \to \mathbb{R} \) have continuous partial derivatives, and suppose \((x_0, y_0, z_0)\) lies on the level surface defined by \(f(x, y, z) = k \), for some constant \(k \). Then \(\nabla f(x_0, y_0, z_0) \) is normal to the level surface.

What do we mean by normal to a surface?

We can then use that normal vector to find a plane that is tangent to the level surface at \((x_0, y_0, z_0)\).

Example 2. Let \(f(x, y, z) = x^2 + 2y^2 + 3z^2 \). Find the normal vector to the level surface \(f(x, y, z) = 6 \) at the point \((1, -1, 1)\), and write an equation for the tangent plane to the surface there.

The same thing works for functions of two variables, except now the gradient is normal to level curves.

Example 3. Let \(f(x, y) = e^{-(x^2 + 3y^2)} \).

1. Find \(\nabla f \) at the points of the level curve \(f(x, y) = 1/e \) where \(x = 1/2 \).
2. Find a vector that is normal to the graph of \(f(x, y) = e^{-(x^2 + 3y^2)} \) at \((1/2, 1/4)\), and use it to produce a plane that is tangent to the graph there. (This time, think of the graph as a level surface of a function of three variables, then notice that this produces the same plane as our previous method.)