Today:

1. (2.6) The gradient is normal to level sets.
2. (3.1) Mixed partials are equal.
3. (5.1, 5.2) The double integral

Last time, we showed that the gradient ∇f points in the direction of fastest increase of f.

Theorem. Let $f : \mathbb{R}^3 \to \mathbb{R}$ have continuous partial derivatives, and suppose (x_0, y_0, z_0) lies on the level surface defined by $f(x, y, z) = k$, for some constant k. Then $\nabla f(x_0, y_0, z_0)$ is normal to the level surface.

What do we mean by normal to a surface?

We can then use that normal vector to find a plane that is tangent to the level surface at (x_0, y_0, z_0).

Example 2 from Friday. Let $f(x, y, z) = x^2 + 2y^2 + 3z^2$. Find the normal vector to the level surface $f(x, y, z) = 6$ at the point $(1, -1, 1)$, and write an equation for the tangent plane to the surface there.

The same thing works for functions of two variables, except now the gradient is normal to level curves.

Example 3 from Friday. Let $f(x, y) = e^{-(x^2 + 3y^2)}$.

1. Find ∇f at the points of the level curve $f = 1/e$ where $x = 1/2$.

2. Find a vector that is normal to the graph of $f(x, y) = e^{-(x^2 + 3y^2)}$ at $(1/2, 1/2)$, and use it to produce a plane that is tangent to the graph there. (This time, think of the graph as a level surface of a function of three variables, then notice that this produces the same plane as our previous method.)

Second partial derivatives

If $f : \mathbb{R}^2 \to \mathbb{R}$ is a function of two variables, then so are $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, and hence we can investigate their partial derivatives with respect to x and y:

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \quad f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

$$f_{yx} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \quad f_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

Example 1.

Let $f(x, y) = x^2 \sin y$. Find the four second partial derivatives.

Theorem. Let $f : \mathbb{R}^2 \to \mathbb{R}$. If f has continuous second partial derivatives, then the mixed second partial derivatives are equal.

That is, $f_{xy} = f_{yx}$ or $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.
Double integrals as volume

Recall our definition of integral for functions $f : \mathbb{R} \to \mathbb{R}$.

Consider a function $f : \mathbb{R}^2 \to \mathbb{R}$ defined on a rectangle $R = [a, b] \times [c, d]$ defined by $a \leq x \leq b$ and $c \leq y \leq d$.

Create subrectangles as follows: for each n, write $\Delta x = \frac{b-a}{n}$ and $\Delta y = \frac{d-c}{n}$. Then there are n^2 subrectangles R_{ij}.

In each subrectangle R_{ij} choose a point (x_{ij}, y_{ij}).

We define
\[
\int_{R} f(x, y) \, dA = \lim_{n \to \infty} \sum_{i,j=1}^{n} f(x_{ij}, y_{ij}) \Delta x \Delta y,
\]
if the limit exists.

How will we calculate these quantities?

Example 2. Refer to the diagram on the board. Find $\int_{R} f \, dA$.

A “slicing” principle leads to the following iterated integrals:
\[
\int_{R} f(x, y) \, dA = \int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] dx = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \, dx \right] dy.
\]

Example 3. Find
\[
\int_{R} xye^{-x^2+y^2} \, dA,
\]
where $R = [0, A] \times [0, A]$ for fixed $A > 0$.

How does this quantity behave as $A \to \infty$?