Example 4 from Wednesday. Find
\[\int_C yz\,dx + xz\,dy + xy\,dz, \]
where \(c(t) = (\cos t, \sin t, \cos t \sin t) \) for \(0 \leq t \leq 2\pi \).

Recall that we calculated the value of this line integral directly (leaving out some steps) to be 0.

Theorem. If \(c \) is a path defined on \(a \leq t \leq b \), and \(f \) is a real-valued function, then
\[\int_C \nabla f \cdot ds = f(c(b)) - f(c(a)). \]

One special kind of reparametrization

Question: How does the value of a line integral change if we travel along the path in the opposite direction?

Given a path \(c \) defined on the interval \(a \leq t \leq b \), define \(\tilde{c}(t) = c(a + b - t) \), the opposite path to \(c \).

Compare \(\int_c \mathbf{F} \cdot ds \) and \(\int_{\tilde{c}} \mathbf{F} \cdot ds \).

How do path integrals compare on \(c \) and \(\tilde{c} \)?

Theorem. If \(\mathbf{F} \) is vector field, then
\[\int_c \mathbf{F} \cdot ds = -\int_{\tilde{c}} \mathbf{F} \cdot ds. \]

If \(f \) is a real-valued function, then
\[\int_c f\,ds = \int_{\tilde{c}} f\,ds. \]

Notice the negative sign in the first equation and the lack of one in the second!

Line integrals of vector fields respect orientation, and path integrals of real-valued functions ignore orientation.

Extremely vague Fundamental Theorem

The integral of a “derivative” of a function on a region is equal to the total change of the function on the boundary.
Green’s Theorem. Let \(D \) be a simple region and let \(C \) be its boundary. Let \(C^+ \) be the path that traces out \(C \) with positive orientation. Suppose \(P \) and \(Q \) are functions defined on \(D \) that have continuous partial derivatives. Then

\[
\int_{C^+} P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.
\]

Vector form:

Let \(F \) be the vector field \(F = (P, Q) \). Then we can write the conclusion of Green’s theorem this way:

\[
\int_{C^+} F \cdot ds = \iint_D (\text{curl} \, F) \cdot k \, dA.
\]

Informally: the line integral of a vector field on the “outside” is equal to the double integral of the scalar curl on the “inside”.

Before we see why Green’s Theorem might be true, some applications:

We can use Green’s Theorem to find the area of the region \(D \).

\[
A(D) = \frac{1}{2} \int_{C^+} x \, dy - y \, dx.
\]

Example 1. Use this formula to find the area of the region enclosed by the path \((r \cos t, r \sin t)\).

Example 2. Find the area of the flower described in polar coordinates \((r, t)\) by the equation \(r = \sin kt \), for each \(k \geq 1 \).