Today:

Let’s get back up to speed and then return to Green’s Theorem.

A proof of Green’s Theorem in a special case.

End of material for Exam 2.

8.3. When is a vector field conservative?

Review:

We are working with vector fields, which are vector-valued functions \(F \) that assign to each point of \(\mathbb{R}^3 \) (or \(\mathbb{R}^2 \)) a vector in \(\mathbb{R}^3 \) (or \(\mathbb{R}^2 \)).

The line integral of \(F \) along a path \(c(t) \) for \(a \leq t \leq b \) is given by:

\[
\int_c F \cdot ds = \int_a^b F(c(t)) \cdot c'(t) \, dt.
\]

If \(F \) happens to be the gradient of a real-valued function \(f \) (that is \(\nabla f = F \)), then the line integral can be calculated quickly via the fundamental theorem for gradients.

Theorem. If \(c \) is a path defined on \(a \leq t \leq b \), and \(f \) is a real-valued function, then

\[
\int_c \nabla f \cdot ds = f(c(b)) - f(c(a)).
\]

Now we want to relate the line integral along a closed path to a double integral on the region the path encloses.

Green’s Theorem. Let \(D \) be a simple region and let \(C \) be its boundary. Let \(C^+ \) be the path that traces out \(C \) with positive orientation. Suppose \(P \) and \(Q \) are functions defined on \(D \) that have continuous partial derivatives. Then

\[
\int_{C^+} P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy.
\]

Last time, we used Green’s Theorem to find the area of a region:

\[
A(D) = \frac{1}{2} \int_{C^+} x \, dy - y \, dx.
\]

Note: Green’s theorem applies to more complicated regions, as in the following example:

Example 1. Find the area of the annulus centered at the origin that has outer radius \(R \) and inner radius \(r \).
Now, why is Green’s Theorem true?

To get a feel for why it’s true, let’s prove it in the case that the region \(D \) is the rectangle defined by \(a \leq x \leq b \) and \(c \leq y \leq d \). Let \(C^+ \) be the positively oriented path starting at \((a, c)\) around the rectangle. We show:

Step 1.

\[
\int_{C^+} P \, dx = -\iint_R \frac{\partial P}{\partial y} \, dx \, dy.
\]

(note negative sign)

Step 2.

\[
\int_{C^+} Q \, dy = \iint_R \frac{\partial Q}{\partial x} \, dx \, dy.
\]

When is a vector field conservative?

Recall that we say a vector field \(\mathbf{F} \) is conservative if it is the gradient of a real-valued function. That is, \(\nabla f = \mathbf{F} \).

This is a nice thing to know: in this case,

\[
\int_C \mathbf{F} \cdot ds = f(c(b)) - f(c(a)).
\]

In other words, the value of the integral is path-independent. It depends only on the value of the function at the endpoints of the path.

The following statement gives us tools for deciding whether a field is conservative.

(Note, however, that the analogous statement in the book concerns vector fields in \(\mathbb{R}^3 \) and requires Stokes’ Theorem (8.2). For now, we work with vector fields in \(\mathbb{R}^2 \), so that part of the following statement can be proven using Green’s Theorem.)

For a \(C^1 \) vector field \(\mathbf{F} \) on \(\mathbb{R}^2 \), the following conditions are equivalent:

1. For any simple closed curve \(C \), we have \(\int_C \mathbf{F} \cdot ds = 0 \).

2. For any two simple closed curves \(C_1 \) and \(C_2 \) with the same endpoints, we have \(\int_{C_1} \mathbf{F} \cdot ds = \int_{C_2} \mathbf{F} \cdot ds \).

3. \(\mathbf{F} \) is the gradient of some function \(f \).

4. \(\text{curl} \mathbf{F} = \nabla \times \mathbf{F} = 0 \). And for vector fields in \(\mathbb{R}^2 \), \(\text{curl} \mathbf{F} = (Q_x - P_y)k \), so this is the same as saying \(Q_x = P_y \).

Example 2. Is \(\mathbf{F} = (x^2 - y^2, x^2 - y^2) \) conservative? If so, find a potential function for \(\mathbf{F} \). That is, find \(f \) so that \(\nabla f = \mathbf{F} \).

Example 3. Is \(\mathbf{F} = (3 + 2xy, x^2 - 3y^3) \) conservative? If so, find a potential function for \(\mathbf{F} \).

Example 4. (8.3 #9) Find \(\int_C \mathbf{F} \cdot ds \), where \(\mathbf{F} = (e^t \sin y, e^t \cos y, z^2) \) and \(\mathbf{c}(t) = (\sqrt{t}, \sqrt{t}, e^{t^2}) \) for \(0 \leq t \leq 1 \).