Today:

Stokes says, "Integrate over any surface you want!"

Gauss' Theorem, our final generalization of the Fundamental Theorem of Calculus

8.2 #7 Evaluate the integral
\[\iiint_W (\nabla \times \mathbf{F}) \cdot dV, \]
where \(W \) is the portion of the surface of the sphere defined by \(x^2 + y^2 + z^2 = 1 \) and \(x + y + z \leq 1 \), and where \(\mathbf{F} = r \times (i + j + k) \), with \(r = xi + yj + zk \).

Example 3 from Wed. Find
\[\iint_S (\nabla \times \mathbf{F}) \cdot dS, \]
where \(S \) is the part of the ellipsoid \(x^2 + y^2 + 2z^2 = 10 \) with \(z \geq 0 \), and \(\mathbf{F} = (\sin(xy), e^x, -yz) \).

Rewriting Green's Theorem to prepare for Gauss' Theorem

Divergence form of Green's Theorem
\[\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_D \text{div} \mathbf{F} \, dA. \]

Gauss' Theorem Let \(W \) be a region in \(\mathbb{R}^3 \) that is bounded by a closed, oriented surface \(S \). Let \(\mathbf{F} \) be a smooth vector field on \(W \). Then
\[\iiint_W \mathbf{F} \cdot dS = \iiint_W \text{div} \mathbf{F} \, dV. \]

Example 1. Verify Gauss' Theorem for the ball of radius 1 about the origin in \(\mathbb{R}^3 \) and \(\mathbf{F} = (x, y, z) \).

Example 2. For \(\mathbf{F} = (y - x, x^5, y^3, \cos(x^2 y^3)) \) and \(S \) the sphere of radius 1 about the origin, find
\[\iint_S \mathbf{F} \cdot dS. \]

Example 3. For \(\mathbf{F} = (2x, -3y, 4z) \), find
\[\iint_S \mathbf{F} \cdot dS, \]
where \(S \) is the surface of the parallelepiped spanned by the vectors \((1, 0, 0), (0, 1, 0), \) and \((0, 2, 3)\).