1) Determine the orders of the following groups of matrices, explaining your reasoning. (5 points each)

Here, \(p \) denotes a prime, a matrix \(M \) is orthogonal over a general field if and only if \(M^t M = I \), and \(T_n(F) \) denotes the the group of \(n \)-by-\(n \) invertible upper triangular matrices with entries in the field \(F \).

a) \(T_n(F_p) \)
b) \(SL_3(F_p) \)
c) \(O_3(F_2) \)
d) \(SO_3(F_3) \)
e) \(O_2(F_7) \)

2) a) (5 points) Let \(J_n \) denote the \(n \)-by-\(n \) matrix that contains a one in every single entry. For example, \(J_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \) and \(J_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \). Diagonalize the matrix \(J_n \), for general \(n \), explaining your work.

b) (5 points) Let \(\rho_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \). Diagonalize the matrix \(\rho_\theta \) over the complex numbers. Your answer should be written in terms of \(\theta \). For what values of \(\theta \) is \(\rho_\theta \) diagonalizable over the reals?

3) (Jordan Canonical Form) Let \(T : V \to V \) be a linear operator on a finite dimensional complex vector space \(V \). A generalized eigenvector, with value \(\lambda \in \mathbb{C} \), is a nonzero vector \(v \in V \) such that \((T - \lambda I)^k v = 0\) for some positive integer \(k \). (If this identity holds for \(k = 1 \), then \(v \) is an eigenvector with eigenvalue \(\lambda \).) We call the set of generalized eigenvectors, together with the zero vector, a generalized eigenspace, and denote it as \(V_\lambda \).

a) (5 points) Prove that for any \(\lambda \in \mathbb{C} \), \(V_\lambda \) is a \(T \)-invariant subspace.

Hint: Prove that \(V_\lambda \) is a subspace first, and then show \((T - \lambda I)v \in V_\lambda \). Use this to prove \(V_\lambda \) is \(T \)-invariant.
b) (10 points) Assume that \(v \in V_\lambda \) and \((T - \lambda I)^{d-1}v \neq 0 \) but \((T - \lambda I)^d v = 0\). Show that the set
\[
W_\lambda^{(v)} = \{ w_1, w_2, \ldots, w_{d-1}, w_d \} = \{ (T - \lambda I)^{d-1}v, (T - \lambda I)^{d-2}v, \ldots, (T - \lambda I)v, v \}
\]
is linearly independent.

Hint: Assume otherwise and apply the operator \((T - \lambda I)\) to a non-trivial linear combination.

Remark: You don’t have to for this problem, but it is possible to show that for each \(\lambda \in \mathbb{C} \) which is a root of \(T \)'s characteristic polynomial, one can choose a nonzero vector \(v \in V_\lambda \) so that \(W_\lambda^{(v)} \) is a basis for, i.e. spans, \(V_\lambda \). Furthermore, one can show that \(V \) is the direct sum of its generalized eigenspaces, i.e. \(V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_r} \) where \(\lambda_1 \) through \(\lambda_r \) are the roots of \(T \)'s characteristic polynomial.

c) (5 points) Show that for \(w_i \in W_\lambda^{(v)} \), \(Tw_i = \lambda w_i + w_{i-1} \), and using the remark, conclude that for every linear operator \(T : V \to V \) (here, \(V \) is a complex vector space), there exists a basis such that the matrix representing \(T \) is block-diagonal where each block is from one of the following (for some choice of \(\lambda \)):
\[
\begin{bmatrix}
\lambda \\
\lambda & 1 \\
0 & \lambda
\end{bmatrix}, \begin{bmatrix}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{bmatrix}, \begin{bmatrix}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{bmatrix}, \text{ etc.}
\]

d) (5 points) Compute the Jordan Canonical form of
\[
\begin{bmatrix}
2 & 2 & -2 \\
2 & 1 & -1 \\
2 & 1 & -1
\end{bmatrix},
\]
explaining your work.

4) a) (5 points) Let \(G \) be the group of rotational symmetries of a cube. Describe, and determine the isomorphism type of, the group \(H \), the stabilizer subgroup of a diagonal connecting two antipodal (opposite) vertices.

(Bonus) (5 points) Based on (a) or otherwise, prove that \(G \cong S_4 \).

b) (10 points) Let \(GL_2(\mathbb{C}) \) act on the set \(\mathbb{C}^{2 \times 2} \), of 2-by-2 complex matrices, by conjugation. Describe the orbit and stabilizer subgroup of the matrix \(\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \) under this action.

5) Let \(G \) be a group and Aut \(G \) denote the set of its automorphisms, that is isomorphisms from \(G \) to itself.

a) (5 points) Prove that Aut \(G \) is a group with the law of composition given by composition of functions.

b) (5 points) Consider the map \(\psi : G \to \text{Aut } G \) defined by \(\psi(g) = \phi_g \). Here \(\phi_g \) denotes the conjugation map from \(G \) to \(G \) which sends \(h \in G \) to \(ghg^{-1} \). Prove that \(\psi \) is a homomorphism and determine its kernel.

c) (5 points) The image of \(\psi \) is known as Inn \(G \), the subgroup of inner automorphisms. Prove that Inn \(G \) is a normal subgroup of Aut \(G \).

d) (10 points) Describe Aut \(D_4 \) and Inn \(D_4 \), and determine their isomorphism types.