A Combinatorial Formula for Birational Rowmotion on Rectangular Posets

Gregg Musiker (UMN)* and Tom Roby (UCONN)
Combinatorics and Graph Theory Seminar Michigan State

October 24, 2017
http://math.umn.edu/~musiker/Birational17.pdf

Outline

(1) Standard Young Tableaux and Promotion
(2) Classical Rowmotion
(3) Birational Rowmotion
(9) Formula in terms of Lattice Paths
(5) Sketch of Proof

Thank you for support from NSF Grant DMS-1362980 and the 2015 AIM workshop on Dynamical Algebraic Combinatorics.
http://math.umn.edu/~musiker/Birational17.pdf

Standard Young Tableaux and Promotion

Recall that a filling of a Standard Young Tableaux is an assignment from $\{1,2, \ldots, n\}$ that is row-increasing and column-increasing.

$$
\left\{\begin{array}{|l|l|l}
1 & 2 & 3 \\
\hline 4 & 5 & 6
\end{array}, \begin{array}{|l|l|l}
1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array}, \begin{array}{|l|l|l}
1 & 2 & 5 \\
3 & 4 & 6 \\
\hline
\end{array}, \begin{array}{|l|l|l}
1 & 3 & 4 \\
\hline & 5 & 6 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline
\end{array}\right\}
$$

Standard Young Tableaux and Promotion

Recall that a filling of a Standard Young Tableaux is an assignment from $\{1,2, \ldots, n\}$ that is row-increasing and column-increasing.

$$
\left\{\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
3 & 5 & 6 \\
\hline
\end{array}, \begin{array}{|l|l|l}
1 & 2 & 5 \\
3 & 4 & 6 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline & 5 & 6 \\
\hline
\end{array}, \begin{array}{|l|l|l|}
\hline & 3 & 3 \\
\hline
\end{array}\right)
$$

One can also study Standard Young Tableaux of skew shapes.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

1	2	3
4	5	6

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

1	2	3
4	5	\bullet

Step 1: Replace the largest element with an empty square.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

1	2	3
4	\bullet	5

Step 2: Move smaller entries into empty square one at a time.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

1	2	3
\bullet	4	5

Step 2: Move smaller entries into empty square one at a time.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

\bullet	2	3
1	4	5

Step 2: Move smaller entries into empty square one at a time.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

$$
\begin{array}{|l|l|l|}
\hline \bullet & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array}
$$

Step 3: Add one to all entries.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

1	3	4
2	5	6

Step 4: Replace empty square with 1.

Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or Promotion.

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & 6 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array}
$$

A Related Dynamic on Order Ideals

We can think of these orbits also as a dynamic on order ideals.

A Related Dynamic on Order Ideals (skew case)

A Related Dynamic on Order Ideals (skew case)

Classical rowmotion

Classical rowmotion is the rowmotion studied by Striker-Williams (arXiv:1108.1172). It has appeared many times before, under different guises:

- Brouwer-Schrijver (1974) (as a permutation of the antichains),
- Fon-der-Flaass (1993) (as a permutation of the antichains),
- Cameron-Fon-der-Flaass (1995) (as a permutation of the monotone Boolean functions),
- Panyushev (2008), Armstrong-Stump-Thomas (2011) (as a permutation of the antichains or "nonnesting partitions", with relations to Lie theory).

Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map $\mathbf{r}: J(P) \longrightarrow J(P)$ sending every order ideal S to a new order ideal $\mathbf{r}(S)$ generated by the minimal elements of $P \backslash S$.

Example: Let S be the following order ideal
Let S be the following order ideal (indicated by the \bullet 's):

Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map $\mathbf{r}: J(P) \longrightarrow J(P)$ sending every order ideal S to a new order ideal $\mathbf{r}(S)$ generated by the minimal elements of $P \backslash S$.

Example: Let S be the following order ideal
Mark M (the minimal elements of the complement) in blue.

Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map $\mathbf{r}: J(P) \longrightarrow J(P)$ sending every order ideal S to a new order ideal $\mathbf{r}(S)$ generated by the minimal elements of $P \backslash S$.

Example: Let S be the following order ideal
Remove the old order ideal:

Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map $\mathbf{r}: J(P) \longrightarrow J(P)$ sending every order ideal S to a new order ideal $\mathbf{r}(S)$ generated by the minimal elements of $P \backslash S$.

Example: Let S be the following order ideal $\mathbf{r}(S)$ is the order ideal generated by M ("everything below M "):

Earlier Examples Revisited

We can think of these orbits also as a dynamic on order ideals.

Earlier Examples Revisited

Classical rowmotion: properties

Classical rowmotion is a permutation of $J(P)$, hence has finite order. This order can be fairly large.

Classical rowmotion: properties

Classical rowmotion is a permutation of $J(P)$, hence has finite order. This order can be fairly large.
However, for some types of P, the order can be explicitly computed or bounded from above.
See Striker-Williams for an exposition of known results.

- If P is a $p \times q$-rectangle:

(shown here for $p=2$ and $q=3$), then ord $(\mathbf{r})=p+q$.

Classical rowmotion: properties

Example:

Let S be the order ideal of the 2×3-rectangle $[0,1] \times[0,2]$ given by:

Classical rowmotion: properties

Example: $\mathbf{r}(S)$ is

Classical rowmotion: properties

Example:
 $\mathbf{r}^{2}(S)$ is

Classical rowmotion: properties

Example:
 $\mathbf{r}^{3}(S)$ is

Classical rowmotion: properties

Example:
 $\mathbf{r}^{4}(S)$ is

Classical rowmotion: properties

Example:

$\mathbf{r}^{5}(S)$ is

which is precisely the S we started with.

$$
\operatorname{ord}(\mathbf{r})=p+q=2+3=5
$$

Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many small operations, each an involution.

- Define $\mathbf{t}_{v}(S)$ as:
- $S \triangle\{v\}$ (symmetric difference) if this is an order ideal;
- S otherwise.

Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many small operations, each an involution.

- Define $\mathbf{t}_{v}(S)$ as:
- $S \triangle\{v\}$ (symmetric difference) if this is an order ideal;
- S otherwise.
("Try to add or remove v from S, as long as the result remains an order ideal, i.e. within $J(P)$; otherwise, leave S fixed.")

Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many small operations, each an involution.

- Define $\mathbf{t}_{v}(S)$ as:
- $S \triangle\{v\}$ (symmetric difference) if this is an order ideal;
- S otherwise.
("Try to add or remove v from S, as long as the result remains an order ideal, i.e. within $J(P)$; otherwise, leave S fixed.")
- More formally, if P is a poset and $v \in P$, then the v-toggle is the map $\mathbf{t}_{v}: J(P) \rightarrow J(P)$ which takes every order ideal S to:
- $S \cup\{v\}$, if v is not in S but all elements of P covered by v are in S already;
- $S \backslash\{v\}$, if v is in S but none of the elements of P covering v is in S;
- S otherwise.
- Note that $\mathbf{t}_{v}^{2}=$ id.

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{\mathrm{v}_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}}
$$

Example:

Start with this order ideal S :

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}}
$$

Example:

First apply $\mathbf{t}_{(1,1)}$, which changes nothing:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}}
$$

Example:

Then apply $\mathbf{t}_{(1,0)}$, which removes $(1,0)$ from the order ideal:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}} .
$$

Example:

Then apply $\mathbf{t}_{(0,1)}$, which adds $(0,1)$ to the order ideal:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}}
$$

Example:

Finally apply $\mathbf{t}_{(0,0)}$, which changes nothing:

Classical rowmotion: the toggling definition

- Let $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be a linear extension of P; this means a list of all elements of P (each only once) such that $i<j$ whenever $v_{i}<v_{j}$.
- Cameron and Fon-der-Flaass showed that

$$
\mathbf{r}=\mathbf{t}_{v_{1}} \circ \mathbf{t}_{v_{2}} \circ \ldots \circ \mathbf{t}_{v_{n}}
$$

Example:

So this is $S \longrightarrow \mathbf{r}(S)$:

Generalizing to the piece-wise linear setting

The decomposition of classical rowmotion into toggles allows us to define a piecewise-linear (PL) version of rowmotion acting on functions on a poset. Let P be a poset, with an extra minimal element $\hat{0}$ and an extra maximal element 1 adjoined.

Generalizing to the piece-wise linear setting

The decomposition of classical rowmotion into toggles allows us to define a piecewise-linear (PL) version of rowmotion acting on functions on a poset. Let P be a poset, with an extra minimal element $\hat{0}$ and an extra maximal element $\hat{1}$ adjoined.

The order polytope $\mathcal{O}(P)$ (introduced by R. Stanley) is the set of functions $f: P \rightarrow[0,1]$ with $f(\hat{0})=0, f(\hat{1})=1$, and $f(x) \leq f(y)$ whenever $x \leq_{P} y$.

Generalizing to the piece-wise linear setting

The decomposition of classical rowmotion into toggles allows us to define a piecewise-linear (PL) version of rowmotion acting on functions on a poset. Let P be a poset, with an extra minimal element $\hat{0}$ and an extra maximal element $\hat{1}$ adjoined.

The order polytope $\mathcal{O}(P)$ (introduced by R . Stanley) is the set of functions $f: P \rightarrow[0,1]$ with $f(\hat{0})=0, f(\hat{1})=1$, and $f(x) \leq f(y)$ whenever $x \leq_{P} y$.

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Generalizing to the piece-wise linear setting

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.
Note that the interval $\left[\min _{z \cdot>x} f(z), \max _{w<\cdot x} f(w)\right]$ is precisely the set of values that $f^{\prime}(x)$ could have so as to satisfy the order-preserving condition.
if $f^{\prime}(y)=f(y)$ for all $y \neq x$, the map that sends

$$
f(x) \text { to } \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x)
$$

is just the affine involution that swaps the endpoints.

Example of flipping at a node

$$
\begin{gathered}
\min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)=.7+.2=.9 \\
f(x)+f^{\prime}(x)=.4+.5=.9
\end{gathered}
$$

Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply flip-maps from top to bottom, to get piecewise-linear rowmotion:

(We successively flip at $N=(1,1), W=(1,0), E=(0,1)$, and $S=(0,0)$ in order.)

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

Start with this order ideal S :

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

Translated to the PL setting:

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

First apply $\mathbf{t}_{(1,1)}$, which changes nothing:

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

Then apply $\mathbf{t}_{(1,0)}$, which removes $(1,0)$ from the order ideal:

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

Then apply $\mathbf{t}_{(0,1)}$, which adds $(0,1)$ to the order ideal:

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

Finally apply $\mathbf{t}_{(0,0)}$, which changes nothing:

How PL rowmotion generalizes classical rowmotion

For each $x \in P$, define the flip-map $\sigma_{x}: \mathcal{O}(P) \rightarrow \mathcal{O}(P)$ sending f to the unique f^{\prime} satisfying

$$
f^{\prime}(y)= \begin{cases}f(y) & \text { if } y \neq x \\ \min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x) & \text { if } y=x\end{cases}
$$

where $z \cdot>x$ means z covers x and $w<\cdot x$ means x covers w.

Example:

So this is $S \longrightarrow \mathbf{r}(S)$:

De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary ring operations $(+, \cdot)$ with the tropical operations (max, +). In the piecewise-linear (PL) category of the order polytope studied above, our flipping-map at x replaced the value of a function $f: P \rightarrow[0,1]$ at a point $x \in P$ with f^{\prime}, where

$$
f^{\prime}(x):=\min _{z \cdot>x} f(z)+\max _{w<\cdot x} f(w)-f(x)
$$

We can "detropicalize" this flip map and apply it to an assignment $f: P \rightarrow \mathbb{R}(x)$ of rational functions to the nodes of the poset, using that $\min \left(z_{i}\right)=-\max \left(-z_{i}\right)$, to get

$$
f^{\prime}(x)=\frac{\sum_{w<\cdot x} f(w)}{f(x) \sum_{z \cdot>x} \frac{1}{f(z)}}
$$

Generalizing to the birational setting

- The rowmotion map \mathbf{r} is a map of 0-1 labelings of P. It has a natural generalization to labelings of P by real numbers in $[0,1]$, i.e., the order polytope of P. Toggles get replaced by piecewise-linear toggling operations that involve max, min, and + .
- Detropicalizing these toggles leads to the definition below of birational toggling. Results at the birational level imply those at the order polytope and combinatorial level.
- This is originally due to Einstein and Propp [EiPr13, EiPr14]. Another exposition of these ideas can be found in [Rob16], from the IMA volume Recent Trends in Combinatorics.

Birational rowmotion

- Let P be a finite poset. We define \widehat{P} to be the poset obtained by adjoining two new elements 0 and 1 to P and forcing
- 0 to be less than every other element, and
- 1 to be greater than every other element.
- Let \mathbb{K} be a field.
- A \mathbb{K}-labelling of P will mean a function $\widehat{P} \rightarrow \mathbb{K}$.
- The values of such a function will be called the labels of the labelling.
- We will represent labellings by drawing the labels on the vertices of the Hasse diagram of \widehat{P}.

Birational rowmotion

- For any $v \in P$, define the birational v-toggle as the rational map $T_{v}: \mathbb{K}^{\widehat{P}} \rightarrow \mathbb{K}^{\widehat{P}}$ defined by

$$
\left(T_{v} f\right)(w)=\left\{\begin{aligned}
f(w), & \text { if } w \neq v ; \\
\frac{\sum_{\substack{u \in \widehat{P}_{;} \\
u<v}} f(u)}{f(v)}, & \text { if } w=v \\
\sum_{\substack{u \in \widehat{P}_{;} \\
u \gtrdot v}} \frac{1}{f(u)}, &
\end{aligned}\right.
$$

for all $w \in \widehat{P}$.

- That is,
- invert the label at v,
- multiply by the sum of the labels at vertices covered by v,
- multiply by the parallel sum of the labels at vertices covering v

Birational rowmotion

- For any $v \in P$, define the birational v-toggle as the rational map $T_{v}: \mathbb{K}^{\widehat{P}} \rightarrow \mathbb{K}^{\widehat{P}}$ defined by

$$
\left(T_{v} f\right)(w)=\left\{\begin{aligned}
f(w), & \text { if } w \neq v ; \\
\frac{1}{f(v)} \cdot \frac{\sum_{\substack{u \in \widehat{P} ; \\
u<v}} f(u)}{\sum_{\substack{u \in \widehat{P}_{;} \\
u \gtrdot v}} \frac{1}{f(u)},} & \text { if } w=v
\end{aligned}\right.
$$

for all $w \in \widehat{P}$.

- Notice that this is a local change to the label at v; all other labels stay the same.
- We have $T_{v}^{2}=$ id (on the range of T_{v}), and T_{v} is a birational map.

Birational rowmotion: definition

- We define birational rowmotion as the rational map

$$
\rho_{B}:=T_{v_{1}} \circ T_{v_{2}} \circ \ldots \circ T_{v_{n}}: \mathbb{K}^{\widehat{P}} \ldots \mathbb{K}^{\widehat{P}}
$$

where $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linear extension of P.

- This is indeed independent of the linear extension, because:

Birational rowmotion: definition

- We define birational rowmotion as the rational map

$$
\rho_{B}:=T_{v_{1}} \circ T_{v_{2}} \circ \ldots \circ T_{v_{n}}: \mathbb{K}^{\widehat{P}} \ldots \mathbb{K}^{\widehat{P}}
$$

where $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ is a linear extension of P.

- This is indeed independent of the linear extension, because:
- T_{v} and T_{w} commute whenever v and w are incomparable (even whenever they are not adjacent in the Hasse diagram of P);
- we can get from any linear extension to any other by switching incomparable adjacent elements.

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We have $\rho_{B}=T_{(0,0)} \circ T_{(0,1)} \circ T_{(1,0)} \circ T_{(1,1)}$
using the linear extension $((1,1),(1,0),(0,1),(0,0))$.
That is, toggle in the order "top, left, right, bottom".

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $\rho_{B}=T_{(0,0)} \circ T_{(0,1)} \circ T_{(1,0)} \circ T_{(1,1)}$.

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $\rho_{B}=T_{(0,0)} \circ T_{(0,1)} \circ T_{(1,0)} \circ T_{(1,1)}$.

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

We are using $\rho_{B}=T_{(0,0)} \circ T_{(0,1)} \circ T_{(1,0)} \circ T_{(1,1)}$.

Birational rowmotion: example

Example:

Let us "rowmote" a (generic) \mathbb{K}-labelling of the 2×2-rectangle:

original labelling f	labelling $T_{(0,0)} T_{(0,1)} T_{(1,0)} T_{(1,1)} f=\rho_{B} f$
	$\begin{gathered} \begin{array}{c} b \\ \mid \\ b(x+y) \\ \hline \end{array} \\ \hline \end{gathered}$

We are using $\rho_{B}=T_{(0,0)} \circ T_{(0,1)} \circ T_{(1,0)} \circ T_{(1,1)}$.

Birational rowmotion orbit on a product of chains

Example:

Iteratively apply ρ_{B} to a labelling of the 2×2-rectangle. $\rho_{B}^{0} f=$

Birational rowmotion orbit on a product of chains

Example:

Iteratively apply ρ_{B} to a labelling of the 2×2-rectangle.
$\rho_{B}^{1} f=$

Birational rowmotion orbit on a product of chains

Example:

Iteratively apply ρ_{B} to a labelling of the 2×2-rectangle.
$\rho_{B}^{2} f=$

Birational rowmotion orbit on a product of chains

Example:

Iteratively apply ρ_{B} to a labelling of the 2×2-rectangle.
$\rho_{B}^{3} f=$

Birational rowmotion orbit on a product of chains

Example:

Iteratively apply ρ_{B} to a labelling of the 2×2-rectangle.
$\rho_{B}^{4} f=$

Birational rowmotion orbit on a product of chains

Example:

Iteratively apply ρ_{B} to a labelling of the 2×2-rectangle.
$\rho_{B}^{4} f=$

So we are back where we started.

$$
\operatorname{ord}\left(\rho_{B}\right)=4
$$

Generalizes $\rho_{B}^{r+s+2} f=f$ for $[0, r] \times[0, s]$, from [Grinberg-Roby 2015].

Birational Rowmotion on the Rectangular Poset

We now give a rational function formula for the values of iterated birational rowmotion $\rho_{B}^{k+1}(i, j)$ for $(i, j) \in[0, r] \times[0, s]$ and $k \in[0, r+s+1]$.

Birational Rowmotion on the Rectangular Poset

We now give a rational function formula for the values of iterated birational rowmotion $\rho_{B}^{k+1}(i, j)$ for $(i, j) \in[0, r] \times[0, s]$ and $k \in[0, r+s+1]$.

1) Let $\bigvee_{(m, n)}:=\{(u, v):(u, v) \geq(m, n)\}$ be the principal order filter at $(m, n), \square_{(m, n)}^{k}$ be the rank-selected subposet, of elements in $\bigvee_{(m, n)}$ whose rank (within $\bigvee_{(m, n)}$) is at least $k-1$ and whose corank is at most $k-1$.

Birational Rowmotion on the Rectangular Poset

2) Let $s_{1}, s_{2}, \ldots, s_{k}$ be the k minimal elements and let $t_{1}, t_{2}, \ldots, t_{k}$ be the k maximal elements of $\square_{(m, n)}^{k}$.

Birational Rowmotion on the Rectangular Poset

2) Let $s_{1}, s_{2}, \ldots, s_{k}$ be the k minimal elements and let $t_{1}, t_{2}, \ldots, t_{k}$ be the k maximal elements of $\square_{(m, n)}^{k}$.

Let $A_{i j}:=\frac{\sum_{z<(i, j)} x_{z}}{x_{(i, j)}}=\frac{x_{i, j-1}+x_{i-1, j}}{x_{i j}}$. We set $x_{i, j}=0$ for $(i, j) \notin P$ and $A_{00}=\frac{1}{x_{00}}($ working in $\widehat{P})$.

Given a triple $(k, m, n) \in \mathbb{N}^{3}$, we define a polynomial $\varphi_{\mathbf{k}}(\mathbf{m}, \mathbf{n})$ in terms of the $A_{i j}$'s as follows.

Birational Rowmotion on the Rectangular Poset

We define a lattice path of length \mathbf{k} within $P=[0, r] \times[0, s]$ to be a sequence $v_{1}, v_{2}, \ldots, v_{k}$ of elements of P such that each difference of successive elements $v_{i}-v_{i-1}$ is either $(1,0)$ or $(0,1)$ for each $i \in[k]$. We call a collection of lattice paths non-intersecting if no two of them share a common vertex.

Birational Rowmotion on the Rectangular Poset

3) Let $S_{k}(m, n)$ be the set of non-intersecting lattice paths in $\square_{(m, n)}^{k}$, from $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ to $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$. Let $\mathcal{L}=\left(L_{1}, L_{2}, \ldots L_{k}\right) \in S_{k}^{k}(m, n)$ denote a k-tuple of such lattice paths.

Birational Rowmotion on the Rectangular Poset

4) Define

$$
\varphi_{k}(m, n):=\sum_{\mathcal{L} \in S_{k}^{k}(m, n)} \prod_{\substack{(i, j) \in \mathbb{Q}_{(m, n)}^{k} \\(i, j) \notin L_{1} \cup L_{2} \cup \cdots \cup L_{k}}} A_{i j} .
$$

Birational Rowmotion on the Rectangular Poset

4) Define

$$
\varphi_{k}(m, n):=\sum_{\mathcal{L} \in S_{k}^{k}(m, n)} \prod_{\substack{(i, j) \in \square_{(m, n)}^{k} \\(i, j) \notin L_{1} \cup L_{2} \cup \cdots \cup L_{k}}} A_{i j} .
$$

5) Finally, set $[\alpha]_{+}:=\max \{\alpha, 0\}$ and let $\mu^{(a, b)}$ be the operator that takes a rational function in $\left\{A_{(u, v)}\right\}$ and simply shifts each index in each factor of each term: $A_{(u, v)} \mapsto A_{(u-a, v-b)}$

Main Theorem (M-Roby 2017+)

Fix $k \in[0, r+s+1]$, and let $\rho_{B}^{k+1}(i, j)$ denote the rational function associated to the poset element (i, j) after $(k+1)$ applications of the birational rowmotion map to the generic initial labeling of $P=[0, r] \times[0, s]$. Set $M=[k-i]_{+}+[k-j]_{+}$.

Main Theorem (M-Roby 2017+)

Fix $k \in[0, r+s+1]$, and let $\rho_{B}^{k+1}(i, j)$ denote the rational function associated to the poset element (i, j) after $(k+1)$ applications of the birational rowmotion map to the generic initial labeling of $P=[0, r] \times[0, s]$. Set $M=[k-i]_{+}+[k-j]_{+}$. We obtain the following formula for $\rho_{B}^{k+1}(i, j)$:
(a1) When $M=0$, i.e. $(i-k, j-k)$ is still in the poset $[0, r] \times[0, s]$:

$$
\rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}
$$

where $\varphi_{t}(v, w)$ is as defined in 4) above.

Main Theorem (M-Roby 2017+)

Fix $k \in[0, r+s+1]$, and let $\rho_{B}^{k+1}(i, j)$ denote the rational function associated to the poset element (i, j) after $(k+1)$ applications of the birational rowmotion map to the generic initial labeling of $P=[0, r] \times[0, s]$. Set $M=[k-i]_{+}+[k-j]_{+}$. We obtain the following formula for $\rho_{B}^{k+1}(i, j)$:
(a1) When $M=0$, i.e. $(i-k, j-k)$ is still in the poset $[0, r] \times[0, s]$:

$$
\rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}
$$

where $\varphi_{t}(v, w)$ is as defined in 4) above.
(a2) When $0<M \leq k$:

$$
\rho_{B}^{k+1}(i, j)=\mu^{\left([k-j]_{+},[k-i]_{+}\right)}\left(\frac{\varphi_{k-M}(i-k+M, j-k+M)}{\varphi_{k-M+1}(i-k+M, j-k+M)}\right)
$$

where $\mu^{(a, b)}$ is as defined in 5) above.

Main Theorem (M-Roby 2017+)

Fix $k \in[0, r+s+1]$, and let $\rho_{B}^{k+1}(i, j)$ denote the rational function associated to the poset element (i, j) after $(k+1)$ applications of the birational rowmotion map to the generic initial labeling of $P=[0, r] \times[0, s]$. Set $M=[k-i]_{+}+[k-j]_{+}$. We obtain the following formula for $\rho_{B}^{k+1}(i, j)$:
(a) When $0 \leq M \leq k$:

$$
\rho_{B}^{k+1}(i, j)=\mu^{\left([k-j]_{+},[k-i]_{+}\right)}\left(\frac{\varphi_{k-M}(i-k+M, j-k+M)}{\varphi_{k-M+1}(i-k+M, j-k+M)}\right)
$$

where $\varphi_{t}(v, w)$ and $\mu^{(a, b)}$ are as defined in 4) and 5) above.

Main Theorem (M-Roby 2017+)

Fix $k \in[0, r+s+1]$, and let $\rho_{B}^{k+1}(i, j)$ denote the rational function associated to the poset element (i, j) after $(k+1)$ applications of the birational rowmotion map to the generic initial labeling of $P=[0, r] \times[0, s]$. Set $M=[k-i]_{+}+[k-j]_{+}$. We obtain the following formula for $\rho_{B}^{k+1}(i, j)$:
(a) When $0 \leq M \leq k$:

$$
\rho_{B}^{k+1}(i, j)=\mu^{\left([k-j]_{+},[k-i]_{+}\right)}\left(\frac{\varphi_{k-M}(i-k+M, j-k+M)}{\varphi_{k-M+1}(i-k+M, j-k+M)}\right)
$$

where $\varphi_{t}(v, w)$ and $\mu^{(a, b)}$ are as defined in 4) and 5) above.
(b) When $M \geq k: \rho_{B}^{k+1}(i, j)=1 / \rho_{B}^{k-i-j}(r-i, s-j)$, which is well-defined by part (a).

Remark: Note that our formulae in (a) and (b) agree when $M=k$. Also, we have $\rho_{B}^{r+s+2+d}=\rho_{B}^{d}$ by periodicity on $[0, r] \times[0, s]$ so this gives a formula for all iterations of the birational rowmotion map.

Examples

Example 1: If $k=0$, we recover the images after a single rowmotion are $\rho_{B}^{1} f(i, j)=\frac{\varphi_{0}(i, j)}{\varphi_{1}(i, j)}$ where

$$
\varphi_{0}(i, j)=\prod_{\substack{i \leq p \leq r \\(p, q): j \leq q \leq s}} A_{p q} \text { and } \varphi_{1}(i, j)=\sum_{\text {Lattice Path L:(i,j)↔(r,s)}} \prod_{(p, q) \notin L} A_{p q} .
$$

Examples

Example 1: If $k=0$, we recover the images after a single rowmotion are $\rho_{B}^{1} f(i, j)=\frac{\varphi_{0}(i, j)}{\varphi_{1}(i, j)}$ where

$$
\varphi_{0}(i, j)=\prod_{\substack{i \leq p \leq r \\(p, q): j \leq q \leq s}} A_{p q} \text { and } \varphi_{1}(i, j)=\sum_{\text {Lattice Path L:(i,j)Њ(r,s)}} \prod_{(p, q) \notin L} A_{p q} .
$$

Example 2: If $k=1$, we recover the images after two rowmotion a

$$
\begin{aligned}
& \rho_{B}^{2} f(i, j)=\frac{\varphi_{1}(i-1, j-1)}{\varphi_{2}(i-1, j-1)}, \varphi_{1}(i-1, j-1)=\sum_{L:(i-1, j-1) \mapsto(r, s)} \prod_{(p, q) \notin L} A_{p q} ; \\
& \varphi_{2}(i-1, j-1)=\sum_{L_{1} \& L_{2}:\{(i, j-1),(i-1, j)\} \mapsto\{(r-1, s),(r, s-1)\}} \prod_{(p, q) \notin L_{1} \cup L_{2}} A_{p q}
\end{aligned}
$$

where $\left\{L_{1}, L_{2}\right\}$ is a family of non-intersecting lattice paths.

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for $P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for
$P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=\mathbf{0}, M=0$ and we get

$$
\rho_{B}^{1}(2,1)=\frac{\varphi_{0}(2,1)}{\varphi_{1}(2,1)}=\frac{A_{21} A_{22} A_{31} A_{32}}{A_{22}+A_{31}} .
$$

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for $P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=\mathbf{1}$, we still have $M=0$, and $\rho_{B}^{2}(2,1)=\frac{\varphi_{1}(1,0)}{\varphi_{2}(1,0)}=$

$$
\frac{A_{11} A_{12} A_{21} A_{22}+A_{11} A_{12} A_{22} A_{30}+A_{11} A_{12} A_{30} A_{31}+A_{12} A_{20} A_{22} A_{30}+A_{12} A_{20} A_{30} A_{31}+A_{20} A_{21} A_{30} A_{31}}{A_{12}+A_{21}+A_{30}} .
$$

For the numerator, $s_{1}=(1,0), t_{1}=(3,2)$, and there are six lattice paths from s_{1} to t_{1}, each of which covers 5 elements and leaves 4 uncovered.

For the denominator, $s_{1}=(2,0), s_{2}=(1,1), t_{1}=(3,1)$, and $t_{2}=(2,2)$, and each pair of lattice paths leaves exactly one element uncovered.

Example in Further Depth

Example in Further Depth

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for $P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=\mathbf{2}$, we get $M=[2-2]_{+}+[2-1]_{+}=1 \leq 2=k$. So by part (a) of the main theorem we have

$$
\begin{gathered}
\rho_{B}^{3}(2,1)=\mu^{(1,0)}\left[\frac{\varphi_{1}(1,0)}{\varphi_{2}(1,0)}\right]=\text { (just shifting indices in the } k=1 \text { formula) } \\
\frac{A_{01} A_{02} A_{11} A_{12}+A_{01} A_{02} A_{12} A_{20}+A_{01} A_{02} A_{20} A_{21}+A_{02} A_{10} A_{12} A_{20}+A_{02} A_{10} A_{20} A_{21}+A_{10} A_{11} A_{20} A_{21}}{A_{02}+A_{11}+A_{20}}
\end{gathered}
$$

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for $P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=3$, we get $M=[3-2]_{+}+[3-1]_{+}=3=k$. Therefore,

$$
\rho_{B}^{4}(2,1)=\mu^{(2,1)}\left[\frac{\varphi_{0}(2,1)}{\varphi_{1}(2,1)}\right]=\mu^{(2,1)}\left[\frac{A_{21} A_{22} A_{31} A_{32}}{A_{22}+A_{31}}\right]=\frac{A_{00} A_{01} A_{10} A_{11}}{A_{01}+A_{10}}
$$

In this situation, we can also use part (b) of the main theorem to get

$$
\rho_{B}^{4}(2,1)=1 / \rho_{B}^{3-2-1}(3-2,2-1)=1 / \rho_{B}^{0}(1,1)=\frac{1}{x_{11}}
$$

The equality between these two expressions is easily checked.

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for
$P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=\mathbf{4}$, we get $M=[4-2]_{+}+[4-1]_{+}=5>k$. Therefore, by part (b) of the main theorem, then part (a),

$$
\rho_{B}^{5}(2,1)=1 / \rho_{B}^{4-2-1}(3-2,2-1)=1 / \rho_{B}^{1}(1,1)=\frac{\varphi_{1}(1,1)}{\varphi_{0}(1,1)}=\frac{A_{12} A_{22}+A_{12} A_{31}+A_{21} A_{31}}{A_{11} A_{12} A_{21} A_{22} A_{31} A_{32}}
$$

Each term in the numerator is associated with one of the three lattice paths from $(1,1)$ to $(3,2)$ in P, while the denominator is just the product of all A-variables in the principal order filter $\bigvee(1,1)$.

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for $P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=5$, we get $M=[5-2]_{+}+[5-1]_{+}=7>k$. Therefore, by part (b) of the main theorem, then part (a),

$$
\rho_{B}^{6}(2,1)=1 / \rho_{B}^{5-2-1}(3-2,2-1)=1 / \rho_{B}^{2}(1,1)=\frac{\varphi_{2}(1,1)}{\varphi_{1}(1,1)}=\frac{1}{A_{12} A_{22}+A_{12} A_{31}+A_{21} A_{31}} .
$$

The numerator here represents the empty product, since the unique (unordered) pair of lattice paths from $s_{1}=(2,1)$ and $s_{2}=(1,2)$ to $t_{1}=(3,1)$ and $t_{2}=(2,2)$ covers all elements of $\square_{(1,1)}^{2}$. The denominator here is the same as the numerator of the previous case

Example in Further Depth

In the "generic" case where shifting $(i, j) \mapsto(i-k, j-k)$ (straight down by $2 k$ ranks) still gives a point in P, we get the following simpler formula

Corollary: For $k \leq \min \{i, j\}, \rho_{B}^{k+1}(i, j)=\frac{\varphi_{k}(i-k, j-k)}{\varphi_{k+1}(i-k, j-k)}$
Example 3: We use our main theorem to compute $\rho_{B}^{k+1}(2,1)$ for $P=[0,3] \times[0,2]$ for $k=0,1,2,3,4,5,6$. Here $r=3, s=2, i=2$, and $j=1$ throughout.

When $\mathbf{k}=\mathbf{6}$, we get $M=[6-2]_{+}+[6-1]_{+}=9>k$. Therefore, by part (b) of the main theorem, then part (a),

$$
\begin{aligned}
& \rho_{B}^{7}(2,1)=1 / \rho_{B}^{6-2-1}(3-2,2-1)=1 / \rho_{B}^{3}(1,1)=\mu^{(1,1)}\left[\frac{\varphi_{1}(1,1)}{\varphi_{0}(1,1)}\right] \\
= & \mu^{(1,1)}\left[\frac{A_{12} A_{22}+A_{12} A_{31}+A_{21} A_{31}}{A_{11} A_{11} A_{21} A_{22} A_{31} A_{32}}\right]=\frac{A_{01} A_{11}+A_{01} A_{20}+A_{10} A_{20}}{A_{00} A_{01} A_{10} A_{11} A_{20} A_{21}}=x_{21}
\end{aligned}
$$

Example in Further Depth

When $\mathbf{k}=\mathbf{6}$, we get $M=[6-2]_{+}+[6-1]_{+}=9>k$. Therefore, by part (b) of the main theorem, then part (a),

$$
\rho_{B}^{7}(2,1)=1 / \rho_{B}^{6-2-1}(3-2,2-1)=1 / \rho_{B}^{3}(1,1)=\mu^{(1,1)}\left[\frac{\varphi_{1}(1,1)}{\varphi_{0}(1,1)}\right]
$$

$=\mu^{(1,1)}\left[\frac{A_{12} A_{22}+A_{12} A_{31}+A_{21} A_{31}}{A_{11} A_{11} A_{21} A_{22} A_{31} A_{32}}\right]=\frac{A_{01} A_{11}+A_{01} A_{20}+A_{10} A_{20}}{A_{00} A_{01} A_{10} A_{11} A_{20} A_{21}}=x_{21}$
The lattice paths involved here are the same as for the $k=4$ computation.
We can deduce this by $A_{00}=1 / x_{00}, A_{10}=x_{00} / x_{10}, A_{01}=x_{00} / x_{01}$, $A_{11}=\left(x_{10}+x_{01}\right) / x_{11}, A_{20}=x_{10} / x_{20}$, and $A_{21}=\left(x_{20}+x_{11}\right) / x_{21}$.

Periodicity also kicks in: $\rho_{B}^{7}(2,1)=\rho_{B}^{0}(2,1)=x_{21}$ using $(r+s+2)=7$.

Sketch of Proof

By the definition of birational rowmotion,
$\rho_{B}^{k+1}(i, j)=\frac{\left(\rho_{B}^{k}(i, j-1)+\rho_{B}^{k}(i-1, j)\right) \cdot\left(\rho_{B}^{k+1}(i+1, j) \| \rho_{B}^{k+1}(i, j+1)\right)}{\rho_{B}^{k}(i, j)}$
where

$$
A \| B=\frac{1}{\frac{1}{A}+\frac{1}{B}} .
$$

Sketch of Proof

By the definition of birational rowmotion,
$\rho_{B}^{k+1}(i, j)=\frac{\left(\rho_{B}^{k}(i, j-1)+\rho_{B}^{k}(i-1, j)\right) \cdot\left(\rho_{B}^{k+1}(i+1, j) \| \rho_{B}^{k+1}(i, j+1)\right)}{\rho_{B}^{k}(i, j)}$
where

$$
A \| B=\frac{1}{\frac{1}{A}+\frac{1}{B}} .
$$

By induction on k, and the fact that we apply birational rowmotion from top to bottom, we can rewrite this formula as

$$
\frac{\left(\rho_{B}^{k}(i, j-1)+\rho_{B}^{k}(i-1, j)\right) \cdot\left(\frac{\varphi_{k}(i-k+1, j-k)}{\varphi_{k+1}(i-k+1, j-k)} \| \frac{\varphi_{k}(i-k, j-k+1)}{\varphi_{k+1}(i-k, j-k+1)}\right)}{\rho_{B}^{k}(i, j)}
$$

Sketch of Proof

By the definition of birational rowmotion,
$\rho_{B}^{k+1}(i, j)=\frac{\left(\rho_{B}^{k}(i, j-1)+\rho_{B}^{k}(i-1, j)\right) \cdot\left(\rho_{B}^{k+1}(i+1, j) \| \rho_{B}^{k+1}(i, j+1)\right)}{\rho_{B}^{k}(i, j)}$
where

$$
A \| B=\frac{1}{\frac{1}{A}+\frac{1}{B}} .
$$

By induction on k, and the fact that we apply birational rowmotion from top to bottom, we can rewrite this formula as

$$
\frac{\left(\rho_{B}^{k}(i, j-1)+\rho_{B}^{k}(i-1, j)\right) \cdot\left(\frac{\varphi_{k}(i-k+1, j-k)}{\varphi_{k+1}(i-k+1, j-k)} \| \frac{\varphi_{k}(i-k, j-k+1)}{\varphi_{k+1}(i-k, j-k+1)}\right)}{\rho_{B}^{k}(i, j)}
$$

Lemma Given the definition of $A \| B$ given above,

$$
\frac{A}{B} \| \frac{C}{D}=\frac{A C}{C B+A D}
$$

Sketch of Proof

Lemma Given the definition of $A \| B$ given above,

$$
\frac{A}{B} \| \frac{C}{D}=\frac{A C}{C B+A D}
$$

Using the Lemma, we can further rewrite the above as

$$
\frac{\left(\frac{\varphi_{k-1}(i-k+1, j-k)}{\varphi_{k}(i-k+1, j-k)}+\frac{\varphi_{k-1}(i-k, j-k+1)}{\varphi_{k}(i-k, j-k+1)}\right) \cdot\left(\frac{\varphi_{k}(i-k+1, j-k) \varphi_{k}(i-k, j-k+1)}{\varphi_{k}(i-k, j-k+1) \varphi_{k+1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k+1}(i-k, j-k+1)}\right)}{\frac{\varphi_{k-1}(i-k+1, j-k+1)}{\varphi_{k}(i-k+1, j-k+1)}}
$$

Sketch of Proof

Lemma Given the definition of $A \| B$ given above,

$$
\frac{A}{B} \| \frac{C}{D}=\frac{A C}{C B+A D} .
$$

Using the Lemma, we can further rewrite the above as

$$
\frac{\left(\frac{\varphi_{k-1}(i-k+1, j-k)}{\varphi_{k}(i-k+1, j-k)}+\frac{\varphi_{k-1}(i-k, j-k+1)}{\varphi_{k}(i-k, j-k+1)}\right) \cdot\left(\frac{\varphi_{k}(i-k+1, j-k) \varphi_{k}(i-k, j-k+1)}{\left.\varphi_{k}(i-k, j-k+1) \varphi_{k+1}^{(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k+1}^{(i-k, j-k+1)}}\right)}\right.}{\frac{\varphi_{k-1}(i-k+1, j-k+1)}{\varphi_{k}(i-k+1, j-k+1)}}
$$

Which equals, after cross-multiplication:

$$
\frac{\left(\frac{\varphi_{k}(i-k, j-k+1) \varphi_{k-1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k-1}(i-k, j-k+1)}{\varphi_{k}(i-k, j-k+1) \varphi_{k+1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k+1}(i-k, j-k+1)}\right)}{\frac{\varphi_{k-1}(i-k+1, j-k+1)}{\varphi_{k}(i-k+1, j-k+1)}}
$$

Sketch of Proof

Which equals, after cross-multiplication:

$$
\frac{\left(\frac{\varphi_{k}(i-k, j-k+1) \varphi_{k-1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k-1}(i-k, j-k+1)}{\varphi_{k}(i-k, j-k+1) \varphi_{k+1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k+1}(i-k, j-k+1)}\right)}{\frac{\varphi_{k-1}(i-k+1, j-k+1)}{\varphi_{k}(i-k+1, j-k+1)}} .
$$

Letting $\alpha_{k}(i, j)=$
$\varphi_{k}(i-k, j-k+1) \frac{\varphi_{k-1}(i-k+1, j-k)}{\varphi_{k-1}(i-k+1, j-k+1)}+\varphi_{k}(i-k+1, j-k) \frac{\varphi_{k-1}(i-k, j-k+1)}{\varphi_{k-1}(i-k+1, j-k+1)}$, we can rewrite the above expression as

$$
\frac{\alpha_{k}(i, j)}{\alpha_{k+1}(i, j)}
$$

Claim It is sufficient to prove $\alpha_{k}(i, j)=\varphi_{k}(i-k, j-k)$ for all $k \geq 0$ to prove our main theorem.

Sketch of Proof

Letting $\alpha_{k}(i, j)=$
$\varphi_{k}(i-k, j-k+1) \frac{\varphi_{k-1}(i-k+1, j-k)}{\varphi_{k-1}(i-k+1, j-k+1)}+\varphi_{k}(i-k+1, j-k) \frac{\varphi_{k-1}(i-k, j-k+1)}{\varphi_{k-1}(i-k+1, j-k+1)}$, we can rewrite the above expression as

$$
\frac{\alpha_{k}(i, j)}{\alpha_{k+1}(i, j)}
$$

Claim It is sufficient to prove $\alpha_{k}(i, j)=\varphi_{k}(i-k, j-k)$ for all $k \geq 0$ to prove our main theorem.

Sketch of Proof

Letting $\alpha_{k}(i, j)=$
$\varphi_{k}(i-k, j-k+1) \frac{\varphi_{k-1}(i-k+1, j-k)}{\varphi_{k-1}(i-k+1, j-k+1)}+\varphi_{k}(i-k+1, j-k) \frac{\varphi_{k-1}(i-k, j-k+1)}{\varphi_{k-1}(i-k+1, j-k+1)}$, we can rewrite the above expression as

$$
\frac{\alpha_{k}(i, j)}{\alpha_{k+1}(i, j)}
$$

Claim It is sufficient to prove $\alpha_{k}(i, j)=\varphi_{k}(i-k, j-k)$ for all $k \geq 0$ to prove our main theorem.

Symbolically, we can rewrite the expression

$$
\frac{\left(\frac{A}{B}+\frac{C}{D}\right) \cdot\left(\frac{B}{G} \| \frac{D}{H}\right)}{\frac{E}{F}}=\frac{\left(\frac{A}{B}+\frac{C}{D}\right) \cdot\left(\frac{B D}{D G+B H}\right)}{\frac{E}{F}}
$$

as

$$
\frac{A D F+B C F}{D E G+B E H}=\frac{A \frac{D}{E}+B \frac{C}{E}}{D \frac{G}{F}+B \frac{H}{F}}
$$

Sketch of Proof

We wish to prove $\alpha_{k}(i, j)=\varphi_{k}(i-k, j-k)$, hence it is sufficient to verify the following Plücker-like identity:

$$
\begin{aligned}
& \varphi_{k}(i-k, j-k) \varphi_{k-1}(i-k+1, j-k+1)= \\
& \quad \varphi_{k}(i-k, j-k+1) \varphi_{k-1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k-1}(i-k, j-k+1)
\end{aligned}
$$

Sketch of Proof

We wish to prove $\alpha_{k}(i, j)=\varphi_{k}(i-k, j-k)$, hence it is sufficient to verify the following Plücker-like identity:
$\varphi_{k}(i-k, j-k) \varphi_{k-1}(i-k+1, j-k+1)=\varphi_{k}(i-k, j-k+1) \varphi_{k-1}(i-k+1, j-k)+\varphi_{k}(i-k+1, j-k) \varphi_{k-1}(i-k, j-k+1)$.
Example (k=4):

Sketch of Proof

We build bounce paths and twigs (paths of length one from \circ to \times) starting from the bottom row of o's.

Example ($k=4$):

Sketch of Proof

We then reverse the colors along the $(k-2)$ twigs and the one bounce path from \circ to $\times($ rather than \circ to \circ).

Example ($k=4$):

Sketch of Proof

Swap in the new colors and shift the o's and \times 's in the bottom two rows.
Example ($k=4$):

Sketch of Proof

$$
\begin{aligned}
& \varphi_{k}(i-k, j-k) \varphi_{k-1}(i-k+1, j-k+1)= \\
& \varphi_{k}(i-k, j-k+1) \varphi_{k-1}(i-k+1, j-k) \\
& \quad+\varphi_{k}(i-k+1, j-k) \varphi_{k-1}(i-k, j-k+1)
\end{aligned}
$$

Example ($k=4$):

Thanks for Listening http://math.umn.edu/~musiker/Birational17.pdf

Peter J. Cameron and Dmitry G. Fon-der-Flaass, Orbits of Antichains Revisited, Europ. J. of Combin., 16(6), (1995), 545-554, http://www.sciencedirect.com/science/article/pii/0195669895900365.

David Einstein and James Propp, Combinatorial, piecewise-linear, and birational homomesy for products of two chains (2013), arXiv:1310.5294.

David Einstein and James Propp, Piecewise-linear and birational toggling (Extended abstract), DMTCS proc. FPSAC 2014, http: //www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAT0145/4518. Also available at arXiv:1404.3455v1.

Dmitry G. Fon-der-Flaass, Orbits of Antichains in Ranked Posets, Europ. J. Combin., 14(1), (1993), 17-22, http://www.sciencedirect.com/science/article/pii/S0195669883710036.

Darij Grinberg and Tom Roby, The order of birational rowmotion (Extended abstract), DMTCS proc. FPSAC 2014, http://www.dmtcs.org/pdfpapers/dmAT0165.pdf.

Darij Grinberg and Tom Roby, Iterative properties of birational rowmotion I: generalities and skeletal posets, Electron. J. of Combin. 23(1), \#P1.33 (2016). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i1p33

Thanks for Listening

Darij Grinberg, Tom Roby, Iterative properties of birational rowmotion II: rectangles and triangles, Electron. J. of Combin. 22(3), \#P3.40 (2015). http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p40.

James Propp, Tom Roby, Jessica Striker, and Nathan Williams (organizers), Sam Hopkins (notetaker), Notes from the AIM workshop on dynamical algebraic combinatorics,
American Institute of Math., San Jose, CA, 23-27 March 2015,
http://aimath.org/pastworkshops/dynalgcomb.html,
http://mit.edu/~shopkins/docs/aim_dyn_alg_comb_notes.pdf.
Tom Roby, Dynamical algebraic combinatorics and the homomesy phenomenon in Andrew Beveridge, et. al., Recent Trends in Combinatorics, IMA Volumes in Math. and its Appl., 159 (2016), 619-652.

William A. Stein et. al., Sage Mathematics Software (Version 6.2.beta2), The Sage Development Team (2014), http://www.sagemath.org.

The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008).

Jessica Striker and Nathan Williams, Promotion and Rowmotion, Europ. J. of Combin. 33 (2012), 1919-1942,
http://www.sciencedirect.com/science/article/pii/S0195669812000972. Also available at arXiv:1108.1172v3.

