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Standard Young Tableaux and Promotion

Recall that a filling of a Standard Young Tableaux is an assignment from
{1, 2, . . . , n} that is row-increasing and column-increasing.{

1 2 3
4 5 6

, 1 2 4
3 5 6

, 1 2 5
3 4 6

, 1 3 4
2 5 6

, 1 3 5
2 4 6

}

One can also study Standard Young Tableaux of skew shapes.{
1 2

3 4
, 1 3

2 4
, 1 4

2 3
, 2 3

1 4
, 2 4

1 3
, 3 4

1 2

}
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}
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1 3
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

1 2 3
4 5 6
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

1 2 3
4 5 •

Step 1: Replace the largest element with an empty square.
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

1 2 3
4 • 5

Step 2: Move smaller entries into empty square one at a time.
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

1 2 3
• 4 5

Step 2: Move smaller entries into empty square one at a time.
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

• 2 3
1 4 5

Step 2: Move smaller entries into empty square one at a time.
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

• 3 4
2 5 6

Step 3: Add one to all entries.
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

1 3 4
2 5 6

Step 4: Replace empty square with 1.
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Standard Young Tableaux and Promotion

There is a certain dynamic one can apply, known as Jeu de taquin or
Promotion.

1 2 3
4 5 6

→ 1 3 4
2 5 6

→ 1 2 5
3 4 6

→ 1 2 3
4 5 6

1 2 4
3 5 6

→ 1 3 5
2 4 6

→ 1 2 4
3 5 6
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A Related Dynamic on Order Ideals

We can think of these orbits also as a dynamic on order ideals.

◦
◦ ◦

→ ◦
• •

→ •
• •

→ ◦
◦ ◦

◦
• ◦

→ ◦
◦ •

→ ◦
• ◦
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A Related Dynamic on Order Ideals (skew case)

1 2
3 4

→ 1 4
2 3

→ 3 4
1 2

→ 2 3
1 4

→ 1 2
3 4

1 3
2 4

→ 2 4
1 3

→ 1 3
2 4
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A Related Dynamic on Order Ideals (skew case)

◦
• •
•

→ •
• •
•

→ ◦

◦ ◦

◦

→ ◦
◦ ◦
•

→ ◦
• •
•

◦

• ◦

•

→ ◦
◦ •
•

→ ◦

• ◦

•
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Classical rowmotion

Classical rowmotion is the rowmotion studied by Striker-Williams
(arXiv:1108.1172). It has appeared many times before, under different
guises:

Brouwer-Schrijver (1974) (as a permutation of the antichains),

Fon-der-Flaass (1993) (as a permutation of the antichains),

Cameron-Fon-der-Flaass (1995) (as a permutation of the monotone
Boolean functions),

Panyushev (2008), Armstrong-Stump-Thomas (2011) (as a
permutation of the antichains or “nonnesting partitions”, with relations
to Lie theory).
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Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map r : J(P) −→ J(P)
sending every order ideal S to a new order ideal r(S) generated by the
minimal elements of P \ S .

Example: Let S be the following order ideal
Let S be the following order ideal (indicated by the  ’s):

# #

 # #
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Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map r : J(P) −→ J(P)
sending every order ideal S to a new order ideal r(S) generated by the
minimal elements of P \ S .

Example: Let S be the following order ideal
Mark M (the minimal elements of the complement) in blue.

# #

   

  

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 9 / 48



Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map r : J(P) −→ J(P)
sending every order ideal S to a new order ideal r(S) generated by the
minimal elements of P \ S .

Example: Let S be the following order ideal
Remove the old order ideal:

# #

#   

# #
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Classical rowmotion

Let P be a finite poset. Classical rowmotion is the map r : J(P) −→ J(P)
sending every order ideal S to a new order ideal r(S) generated by the
minimal elements of P \ S .

Example: Let S be the following order ideal
r(S) is the order ideal generated by M (“everything below M”):

# #

#   
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Earlier Examples Revisited

We can think of these orbits also as a dynamic on order ideals.

◦
◦ ◦

→ ◦
• •

→ •
• •

→ ◦
◦ ◦

◦
• ◦

→ ◦
◦ •

→ ◦
• ◦
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Earlier Examples Revisited

◦
• •
•

→ •
• •
•

→ ◦

◦ ◦

◦

→ ◦
◦ ◦
•

→ ◦
• •
•

◦

• ◦

•

→ ◦
◦ •
•

→ ◦

• ◦

•
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Classical rowmotion: properties

Classical rowmotion is a permutation of J(P), hence has finite order. This
order can be fairly large.

However, for some types of P, the order can be explicitly computed or
bounded from above.
See Striker-Williams for an exposition of known results.

If P is a p × q-rectangle:

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

(shown here for p = 2 and q = 3), then ord (r) = p + q.
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Classical rowmotion: properties

Example:
Let S be the order ideal of the 2× 3-rectangle [0, 1]× [0, 2] given by:

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 13 / 48



Classical rowmotion: properties

Example:
r(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: properties

Example:
r2(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: properties

Example:
r3(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: properties

Example:
r4(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: properties

Example:
r5(S) is

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

which is precisely the S we started with.

ord(r) = p + q = 2 + 3 = 5.
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Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many
small operations, each an involution.

Define tv (S) as:

S 4 {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains an
order ideal, i.e. within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is the
map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are in S
already;
S \ {v}, if v is in S but none of the elements of P covering v is in S ;
S otherwise.

Note that t2v = id.
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There is an alternative definition of rowmotion, which splits it into many
small operations, each an involution.

Define tv (S) as:

S 4 {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains an
order ideal, i.e. within J(P); otherwise, leave S fixed.”)

More formally, if P is a poset and v ∈ P, then the v-toggle is the
map tv : J(P)→ J(P) which takes every order ideal S to:

S ∪ {v}, if v is not in S but all elements of P covered by v are in S
already;
S \ {v}, if v is in S but none of the elements of P covering v is in S ;
S otherwise.

Note that t2v = id.
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Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
First apply t(1,1), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 15 / 48



Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Then apply t(1,0), which removes (1, 0) from the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Then apply t(0,1), which adds (0, 1) to the order ideal:

(1, 1)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
Finally apply t(0,0), which changes nothing:

(1, 1)

(1, 0) (0, 1)

(0, 0)
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Classical rowmotion: the toggling definition

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .

Example:
So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)
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Generalizing to the piece-wise linear setting

The decomposition of classical rowmotion into toggles allows us to define a
piecewise-linear (PL) version of rowmotion acting on functions on a poset.
Let P be a poset, with an extra minimal element 0̂ and an extra maximal
element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of functions
f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y) whenever x ≤P y .

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
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The order polytope O(P) (introduced by R. Stanley) is the set of functions
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minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,
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Generalizing to the piece-wise linear setting

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .

Note that the interval [minz ·>x f (z),maxw<· x f (w)] is precisely the set of
values that f ′(x) could have so as to satisfy the order-preserving condition.

if f ′(y) = f (y) for all y 6= x , the map that sends

f (x) to min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

is just the affine involution that swaps the endpoints.
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Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9
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Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply
flip-maps from top to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3

σN

→ .4 .3

σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4

σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and S = (0, 0)
in order.)
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How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
Start with this order ideal S :

(1, 1)

(1, 0) (0, 1)

(0, 0)

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 20 / 48



How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
Translated to the PL setting:

1

0 1

0
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How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
First apply t(1,1), which changes nothing:

1

0 1

0
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How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
Then apply t(1,0), which removes (1, 0) from the order ideal:

1

1 1

0
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How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
Then apply t(0,1), which adds (0, 1) to the order ideal:

1

1 0

0
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How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
Finally apply t(0,0), which changes nothing:

1

1 0

0
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How PL rowmotion generalizes classical rowmotion

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
Example:
So this is S −→ r(S):

(1, 1)

(1, 0) (0, 1)

(0, 0)

−→ (1, 1)

(1, 0) (0, 1)

(0, 0)
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De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary ring
operations (+, ·) with the tropical operations (max,+). In the
piecewise-linear (PL) category of the order polytope studied above, our
flipping-map at x replaced the value of a function f : P → [0, 1] at a point
x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(x) of rational functions to the nodes of the poset, using that
min(zi ) = −max(−zi ), to get

f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)
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Generalizing to the birational setting

The rowmotion map r is a map of 0-1 labelings of P. It has a natural
generalization to labelings of P by real numbers in [0, 1], i.e., the order
polytope of P. Toggles get replaced by piecewise-linear toggling
operations that involve max, min, and +.

Detropicalizing these toggles leads to the definition below of birational
toggling. Results at the birational level imply those at the order
polytope and combinatorial level.

This is originally due to Einstein and Propp [EiPr13, EiPr14]. Another
exposition of these ideas can be found in [Rob16], from the IMA
volume Recent Trends in Combinatorics.
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Birational rowmotion

Let P be a finite poset. We define P̂ to be the poset obtained by
adjoining two new elements 0 and 1 to P and forcing

0 to be less than every other element, and
1 to be greater than every other element.

Let K be a field.

A K-labelling of P will mean a function P̂ → K.

The values of such a function will be called the labels of the labelling.

We will represent labellings by drawing the labels on the vertices of the
Hasse diagram of P̂.
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Birational rowmotion

For any v ∈ P, define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =



f (w) , if w 6= v ;

1

f (v)
·

∑
u∈P̂;
ulv

f (u)

∑
u∈P̂;
umv

1

f (u)

, if w = v

for all w ∈ P̂.

That is,

invert the label at v ,
multiply by the sum of the labels at vertices covered by v ,
multiply by the parallel sum of the labels at vertices covering v .
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For any v ∈ P, define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ defined by

(Tv f ) (w) =



f (w) , if w 6= v ;

1

f (v)
·

∑
u∈P̂;
ulv

f (u)

∑
u∈P̂;
umv

1

f (u)

, if w = v

for all w ∈ P̂.

Notice that this is a local change to the label at v ; all other labels
stay the same.

We have T 2
v = id (on the range of Tv ), and Tv is a birational map.
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Birational rowmotion: definition

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P.

This is indeed independent of the linear extension, because:

Tv and Tw commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.
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Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1

(1, 1)

(1, 0) (0, 1)

(0, 0)

0

b

z

x y

w

a

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension ((1, 1), (1, 0), (0, 1), (0, 0)).
That is, toggle in the order “top, left, right, bottom”.
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Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

b

z

x y

w

a

b

b(x+y)
z

x y

w

a

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).
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b

z

x y

w

a

b
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z
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w

a

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 27 / 48



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,1)T(1,0)T(1,1)f

b

z

x y

w

a

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

w

a

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 27 / 48



Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

b

z

x y

w

a

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

ab
z

a

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).
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Birational rowmotion orbit on a product of chains

Example:
Iteratively apply ρB to a labelling of the 2× 2-rectangle.
ρ0B f =

b

z

x y

w

a
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Birational rowmotion orbit on a product of chains

Example:
Iteratively apply ρB to a labelling of the 2× 2-rectangle.
ρ1B f =

b

b(x+y)
z

bw(x+y)
xz

bw(x+y)
yz

ab
z

a
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Birational rowmotion orbit on a product of chains

Example:
Iteratively apply ρB to a labelling of the 2× 2-rectangle.
ρ2B f =

b

bw(x+y)
xy

ab
y

ab
x

az
x+y

a
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Birational rowmotion orbit on a product of chains

Example:
Iteratively apply ρB to a labelling of the 2× 2-rectangle.
ρ3B f =

b

ab
w

ayz
w(x+y)

axz
w(x+y)

xy
aw(x+y)

a
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Birational rowmotion orbit on a product of chains

Example:
Iteratively apply ρB to a labelling of the 2× 2-rectangle.
ρ4B f =

b

z

x y

w

a
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Birational rowmotion orbit on a product of chains

Example:
Iteratively apply ρB to a labelling of the 2× 2-rectangle.
ρ4B f =

b

z

x y

w

a

So we are back where we started.

ord(ρB) = 4.

Generalizes ρr+s+2
B f = f for [0, r ]× [0, s], from [Grinberg-Roby 2015].
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Birational Rowmotion on the Rectangular Poset

We now give a rational function formula for the values of iterated birational
rowmotion ρk+1

B (i , j) for (i , j) ∈ [0, r ]× [0, s] and k ∈ [0, r + s + 1].

1) Let
∨

(m,n) := {(u, v) : (u, v) ≥ (m, n)} be the principal order filter at

(m, n), 7k
(m,n)be the rank-selected subposet, of elements in

∨
(m,n) whose

rank (within
∨

(m,n)) is at least k − 1 and whose corank is at most k − 1.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Birational Rowmotion on the Rectangular Poset

2) Let s1, s2, . . . , sk be the k minimal elements and let t1, t2, . . . , tk be the
k maximal elements of 7k

(m,n).

Let Aij :=
∑

zl(i,j) xz

x(i,j)
=

xi,j−1+xi−1,j

xij
. We set xi ,j = 0 for (i , j) 6∈ P and

A00 = 1
x00

(working in P̂).

Given a triple (k,m, n) ∈ N3, we define a polynomial ϕk(m,n) in terms of
the Aij ’s as follows.
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Birational Rowmotion on the Rectangular Poset

We define a lattice path of length k within P = [0, r ]× [0, s] to be a
sequence v1, v2, . . . , vk of elements of P such that each difference of
successive elements vi − vi−1 is either (1, 0) or (0, 1) for each i ∈ [k]. We
call a collection of lattice paths non-intersecting if no two of them share a
common vertex.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Birational Rowmotion on the Rectangular Poset

3) Let Sk(m, n) be the set of non-intersecting lattice paths in 7k
(m,n), from

{s1, s2, . . . , sk} to {t1, t2, . . . , tk}. Let L = (L1, L2, . . . Lk) ∈ Sk
k (m, n)

denote a k-tuple of such lattice paths.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Birational Rowmotion on the Rectangular Poset

4) Define

ϕk(m, n) :=
∑

L∈Sk
k (m,n)

∏
(i,j)∈7k

(m,n))

(i ,j)6∈L1∪L2∪···∪Lk

Aij .

5) Finally, set [α]+ := max{α, 0} and let µ(a,b) be the operator that takes a
rational function in {A(u,v)} and simply shifts each index in each factor of
each term: A(u,v) 7→ A(u−a,v−b)
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Main Theorem (M-Roby 2017+)

Fix k ∈ [0, r + s + 1], and let ρk+1
B (i , j) denote the rational function

associated to the poset element (i , j) after (k + 1) applications of the
birational rowmotion map to the generic initial labeling of P = [0, r ]× [0, s].
Set M = [k − i ]+ + [k − j ]+.

We obtain the following formula for ρk+1
B (i , j):

(a1) When M = 0, i.e. (i − k , j − k) is still in the poset [0, r ]× [0, s]:

ρk+1
B (i , j) =

ϕk(i − k , j − k)

ϕk+1(i − k , j − k)

where ϕt(v ,w) is as defined in 4) above.

(a2) When 0 < M ≤ k:

ρk+1
B (i , j) = µ([k−j]+,[k−i ]+)

(
ϕk−M(i − k + M, j − k + M)

ϕk−M+1(i − k + M, j − k + M)

)
where µ(a,b) is as defined in 5) above.
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Main Theorem (M-Roby 2017+)

Fix k ∈ [0, r + s + 1], and let ρk+1
B (i , j) denote the rational function

associated to the poset element (i , j) after (k + 1) applications of the
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B (i , j) = µ([k−j]+,[k−i ]+)

(
ϕk−M(i − k + M, j − k + M)

ϕk−M+1(i − k + M, j − k + M)

)
where ϕt(v ,w) and µ(a,b) are as defined in 4) and 5) above.

(b) When M ≥ k : ρk+1
B (i , j) = 1/ρk−i−jB (r − i , s − j), which is well-defined

by part (a).

Remark: Note that our formulae in (a) and (b) agree when M = k . Also,
we have ρr+s+2+d

B = ρdB by periodicity on [0, r ]× [0, s] so this gives a
formula for all iterations of the birational rowmotion map.
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Examples

Example 1: If k = 0, we recover the images after a single rowmotion are
ρ1B f (i , j) = ϕ0(i ,j)

ϕ1(i ,j)
where

ϕ0(i , j) =
∏

(p,q):
i≤p≤r

j≤q≤s

Apq and ϕ1(i , j) =
∑

Lattice Path L:(i ,j) 7→(r ,s)

∏
(p,q)6∈L

Apq.

Example 2: If k = 1, we recover the images after two rowmotion a

ρ2B f (i , j) =
ϕ1(i − 1, j − 1)

ϕ2(i − 1, j − 1)
, ϕ1(i −1, j −1) =

∑
L:(i−1,j−1) 7→(r ,s)

∏
(p,q) 6∈L

Apq;

ϕ2(i − 1, j − 1) =
∑

L1&L2:{(i ,j−1),(i−1,j)}7→{(r−1,s),(r ,s−1)}

∏
(p,q)6∈L1∪L2

Apq

where {L1, L2} is a family of non-intersecting lattice paths.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)
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Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 0, M = 0 and we get

ρ1B(2, 1) =
ϕ0(2, 1)

ϕ1(2, 1)
=

A21A22A31A32

A22 + A31
.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 1, we still have M = 0, and ρ2B(2, 1) = ϕ1(1,0)
ϕ2(1,0)

=

A11A12A21A22 + A11A12A22A30 + A11A12A30A31 + A12A20A22A30 + A12A20A30A31 + A20A21A30A31

A12 + A21 + A30

.

For the numerator, s1 = (1, 0), t1 = (3, 2), and there are six lattice paths
from s1 to t1, each of which covers 5 elements and leaves 4 uncovered.

For the denominator, s1 = (2, 0), s2 = (1, 1), t1 = (3, 1), and t2 = (2, 2),
and each pair of lattice paths leaves exactly one element uncovered.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 2, we get M = [2− 2]+ + [2− 1]+ = 1 ≤ 2 = k . So by part (a)
of the main theorem we have

ρ3B(2, 1) = µ(1,0)
[
ϕ1(1, 0)

ϕ2(1, 0)

]
= (just shifting indices in the k = 1 formula)

A01A02A11A12 + A01A02A12A20 + A01A02A20A21 + A02A10A12A20 + A02A10A20A21 + A10A11A20A21

A02 + A11 + A20

.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 3, we get M = [3− 2]+ + [3− 1]+ = 3 = k. Therefore,

ρ4B(2, 1) = µ(2,1)
[
ϕ0(2, 1)

ϕ1(2, 1)

]
= µ(2,1)

[
A21A22A31A32

A22 + A31

]
=

A00A01A10A11

A01 + A10
.

In this situation, we can also use part (b) of the main theorem to get

ρ4B(2, 1) = 1/ρ3−2−1B (3− 2, 2− 1) = 1/ρ0B(1, 1) =
1

x11
.

The equality between these two expressions is easily checked.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 4, we get M = [4− 2]+ + [4− 1]+ = 5 > k . Therefore, by part
(b) of the main theorem, then part (a),

ρ5B(2, 1) = 1/ρ4−2−1
B (3− 2, 2− 1) = 1/ρ1B(1, 1) =

ϕ1(1, 1)

ϕ0(1, 1)
=

A12A22 + A12A31 + A21A31

A11A12A21A22A31A32
.

Each term in the numerator is associated with one of the three lattice
paths from (1, 1) to (3, 2) in P , while the denominator is just the product of
all A-variables in the principal order filter

∨
(1, 1).
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 5, we get M = [5− 2]+ + [5− 1]+ = 7 > k . Therefore, by part
(b) of the main theorem, then part (a),

ρ6B(2, 1) = 1/ρ5−2−1
B (3− 2, 2− 1) = 1/ρ2B(1, 1) =

ϕ2(1, 1)

ϕ1(1, 1)
=

1

A12A22 + A12A31 + A21A31
.

The numerator here represents the empty product, since the unique
(unordered) pair of lattice paths from s1 = (2, 1) and s2 = (1, 2) to
t1 = (3, 1) and t2 = (2, 2) covers all elements of 72

(1,1). The denominator
here is the same as the numerator of the previous case.
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Example in Further Depth

In the “generic” case where shifting (i , j) 7→ (i − k , j − k) (straight down by
2k ranks) still gives a point in P, we get the following simpler formula

Corollary: For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k)

Example 3: We use our main theorem to compute ρk+1
B (2, 1) for

P = [0, 3]× [0, 2] for k = 0, 1, 2, 3, 4, 5, 6. Here r = 3, s = 2, i = 2, and
j = 1 throughout.

When k = 6, we get M = [6− 2]+ + [6− 1]+ = 9 > k . Therefore, by part
(b) of the main theorem, then part (a),

ρ7B(2, 1) = 1/ρ6−2−1B (3− 2, 2− 1) = 1/ρ3B(1, 1) = µ(1,1)
[
ϕ1(1, 1)

ϕ0(1, 1)

]

= µ(1,1)
[
A12A22 + A12A31 + A21A31

A11A11A21A22A31A32

]
=

A01A11 + A01A20 + A10A20

A00A01A10A11A20A21
= x21
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Example in Further Depth

When k = 6, we get M = [6− 2]+ + [6− 1]+ = 9 > k . Therefore, by part
(b) of the main theorem, then part (a),

ρ7B(2, 1) = 1/ρ6−2−1B (3− 2, 2− 1) = 1/ρ3B(1, 1) = µ(1,1)
[
ϕ1(1, 1)

ϕ0(1, 1)

]

= µ(1,1)
[
A12A22 + A12A31 + A21A31

A11A11A21A22A31A32

]
=

A01A11 + A01A20 + A10A20

A00A01A10A11A20A21
= x21

The lattice paths involved here are the same as for the k = 4 computation.

We can deduce this by A00 = 1/x00,A10 = x00/x10,A01 = x00/x01,
A11 = (x10 + x01)/x11,A20 = x10/x20, and A21 = (x20 + x11)/x21.

Periodicity also kicks in: ρ7B(2, 1) = ρ0B(2, 1) = x21 using (r + s + 2) = 7.
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Sketch of Proof

By the definition of birational rowmotion,

ρk+1
B (i , j) =

(
ρkB(i , j − 1) + ρkB(i − 1, j)

)
·
(
ρk+1
B (i + 1, j) || ρk+1

B (i , j + 1)

)
ρkB(i , j)

where

A || B =
1

1
A + 1

B

.

By induction on k , and the fact that we apply birational rowmotion from
top to bottom, we can rewrite this formula as(

ρkB(i , j − 1) + ρkB(i − 1, j)

)
·
(

ϕk (i−k+1,j−k)
ϕk+1(i−k+1,j−k) ||

ϕk (i−k,j−k+1)
ϕk+1(i−k,j−k+1)

)
ρkB(i , j)

Lemma Given the definition of A || B given above,

A

B
|| C
D

=
AC

CB + AD
.
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Sketch of Proof

Lemma Given the definition of A || B given above,

A

B
|| C
D

=
AC

CB + AD
.

Using the Lemma, we can further rewrite the above as

(
ϕk−1(i−k+1,j−k)

ϕk (i−k+1,j−k)
+

ϕk−1(i−k,j−k+1)

ϕk (i−k,j−k+1)

)
·
(

ϕk (i−k+1,j−k) ϕk (i−k,j−k+1)

ϕk (i−k,j−k+1)ϕk+1(i−k+1,j−k) + ϕk (i−k+1,j−k)ϕk+1(i−k,j−k+1)

)
ϕk−1(i−k+1,j−k+1)

ϕk (i−k+1,j−k+1)

.

Which equals, after cross-multiplication:(
ϕk (i−k,j−k+1)ϕk−1(i−k+1,j−k)+ϕk (i−k+1,j−k)ϕk−1(i−k,j−k+1)

ϕk (i−k,j−k+1)ϕk+1(i−k+1,j−k) + ϕk (i−k+1,j−k)ϕk+1(i−k,j−k+1)

)
ϕk−1(i−k+1,j−k+1)

ϕk (i−k+1,j−k+1)

.
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Sketch of Proof

Which equals, after cross-multiplication:(
ϕk (i−k,j−k+1)ϕk−1(i−k+1,j−k)+ϕk (i−k+1,j−k)ϕk−1(i−k,j−k+1)

ϕk (i−k,j−k+1)ϕk+1(i−k+1,j−k) + ϕk (i−k+1,j−k)ϕk+1(i−k,j−k+1)

)
ϕk−1(i−k+1,j−k+1)

ϕk (i−k+1,j−k+1)

.

Letting αk(i , j) =

ϕk(i−k, j−k + 1)
ϕk−1(i−k+1,j−k)
ϕk−1(i−k+1,j−k+1) +ϕk(i−k + 1, j−k)

ϕk−1(i−k,j−k+1)
ϕk−1(i−k+1,j−k+1) ,

we can rewrite the above expression as

αk(i , j)

αk+1(i , j)
.

Claim It is sufficient to prove αk(i , j) = ϕk(i − k , j − k) for all k ≥ 0 to
prove our main theorem.
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Sketch of Proof

Letting αk(i , j) =

ϕk(i−k, j−k + 1)
ϕk−1(i−k+1,j−k)
ϕk−1(i−k+1,j−k+1) +ϕk(i−k + 1, j−k)

ϕk−1(i−k,j−k+1)
ϕk−1(i−k+1,j−k+1) ,

we can rewrite the above expression as

αk(i , j)

αk+1(i , j)
.

Claim It is sufficient to prove αk(i , j) = ϕk(i − k , j − k) for all k ≥ 0 to
prove our main theorem.

Symbolically, we can rewrite the expression(
A
B + C

D

)
·
(

B
G || D

H

)
E
F

=

(
A
B + C

D

)
·
(

BD
DG + BH

)
E
F

as
ADF + BCF

DEG + BEH
=

AD
E + B C

E

D G
F + B H

F

.
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ϕk(i−k, j−k + 1)
ϕk−1(i−k+1,j−k)
ϕk−1(i−k+1,j−k+1) +ϕk(i−k + 1, j−k)

ϕk−1(i−k,j−k+1)
ϕk−1(i−k+1,j−k+1) ,

we can rewrite the above expression as

αk(i , j)

αk+1(i , j)
.

Claim It is sufficient to prove αk(i , j) = ϕk(i − k , j − k) for all k ≥ 0 to
prove our main theorem.

Symbolically, we can rewrite the expression(
A
B + C

D

)
·
(

B
G || D

H

)
E
F

=

(
A
B + C

D

)
·
(

BD
DG + BH

)
E
F

as
ADF + BCF

DEG + BEH
=

AD
E + B C

E

D G
F + B H

F

.

Musiker-Roby (UMN and UCONN) Combinatorics of Birational Rowmotion October 24 2017 41 / 48



Sketch of Proof

We wish to prove αk(i , j) = ϕk(i − k, j − k), hence it is sufficient to verify
the following Plücker-like identity:

ϕk (i − k, j − k)ϕk−1(i − k + 1, j − k + 1) =

ϕk (i − k, j − k + 1)ϕk−1(i − k + 1, j − k) + ϕk (i − k + 1, j − k)ϕk−1(i − k, j − k + 1).

Example (k=4):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦
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Sketch of Proof

We wish to prove αk(i , j) = ϕk(i − k, j − k), hence it is sufficient to verify
the following Plücker-like identity:
ϕk (i−k, j−k)ϕk−1(i−k+1, j−k+1) = ϕk (i−k, j−k+1)ϕk−1(i−k+1, j−k)+ϕk (i−k+1, j−k)ϕk−1(i−k, j−k+1).

Example (k=4):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦
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Sketch of Proof

We build bounce paths and twigs (paths of length one from ◦ to ×)
starting from the bottom row of ◦’s.

Example (k=4):

× × × ×

◦EE
��

◦DD ◦ ◦ ◦

•EE • • • •
��
ZZ •
��
YY

•EE • • •
��
ZZ •

��

•DD
��

• YY
• YY • •

��
ZZ •
��

• ZZ •
��
ZZ •
��

•EE
• YY •

��
• • • • •EE

• YY × ×DD ×DD ×DD •EE
◦ ◦ ◦ ◦ ◦
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Sketch of Proof

We then reverse the colors along the (k − 2) twigs and the one bounce
path from ◦ to × (rather than ◦ to ◦).

Example (k=4):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦
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Sketch of Proof

Swap in the new colors and shift the ◦’s and ×’s in the bottom two rows.

Example (k=4):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×
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Sketch of Proof

ϕk(i − k, j − k)ϕk−1(i − k + 1, j − k + 1) =
ϕk(i − k , j − k + 1)ϕk−1(i − k + 1, j − k)

+ϕk(i − k + 1, j − k)ϕk−1(i − k , j − k + 1).
Example (k=4):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×
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