Introduction to Algebraic Curves over Finite Fields
Outline

1. Introduction to Algebraic Curves over Finite Fields
2. Elliptic Curves and a Combinatorial Interpretation of N_k's
Outline

1. Introduction to Algebraic Curves over Finite Fields
2. Elliptic Curves and a Combinatorial Interpretation of N_k's
3. Journey into Graph Theory: Spanning Trees
Outline

1. Introduction to Algebraic Curves over Finite Fields
2. Elliptic Curves and a Combinatorial Interpretation of N_k's
3. Journey into Graph Theory: Spanning Trees
4. Chip-Firing Games and Critical Groups
Outline

1. Introduction to Algebraic Curves over Finite Fields
2. Elliptic Curves and a Combinatorial Interpretation of N_k's
3. Journey into Graph Theory: Spanning Trees
4. Chip-Firing Games and Critical Groups
5. Connections between Elliptic Curves and Chip-Firing Games
Outline

1. Introduction to Algebraic Curves over Finite Fields
2. Elliptic Curves and a Combinatorial Interpretation of N_k's
3. Journey into Graph Theory: Spanning Trees
4. Chip-Firing Games and Critical Groups
5. Connections between Elliptic Curves and Chip-Firing Games
6. Elliptic Cyclotomic Polynomials and Other Amusements
Outline

1. Introduction to Algebraic Curves over Finite Fields
2. Elliptic Curves and a Combinatorial Interpretation of N_k's
3. Journey into Graph Theory: Spanning Trees
4. Chip-Firing Games and Critical Groups
5. Connections between Elliptic Curves and Chip-Firing Games
6. Elliptic Cyclotomic Polynomials and Other Amusements
7. Further Horizons: Connections to Tropical Geometry
\mathbb{F}_q, a finite field containing q elements, where q is a power of a prime.

\mathbb{F}_{q^k} is a field extension; $\overline{\mathbb{F}}_q$ is an algebraic closure.

Nonsingular Projective Plane Curve (smooth model chosen)

$$C : f(x, y) = 0 \quad \text{plus a single point at infinity.}$$

$$C(\mathbb{F}_q) \subset C(\mathbb{F}_{q^{k_1}}) \subset C(\mathbb{F}_{q^{k_2}}) \subset \cdots \subset C(\overline{\mathbb{F}}_q)$$

for any sequence of natural numbers $1|k_1|k_2|\ldots$.
\mathbb{F}_q, a finite field containing q elements, where q is a power of a prime.

\mathbb{F}_{q^k} is a field extension; $\overline{\mathbb{F}}_q$ is an algebraic closure.

Nonsingular Projective Plane Curve (smooth model chosen)

\[C : f(x, y) = 0 \] plus a single point at infinity.

\[C(\mathbb{F}_q) \subset C(\mathbb{F}_{q^{k_1}}) \subset C(\mathbb{F}_{q^{k_2}}) \subset \cdots \subset C(\overline{\mathbb{F}}_q) \]

for any sequence of natural numbers $1|k_1|k_2|\ldots$.

The Frobenius map π acts on curve C over finite field \mathbb{F}_q via

\[\pi(a, b) = (a^q, b^q) \quad \text{and} \quad \pi(P_\infty) = P_\infty. \]
The **Frobenius** map π acts on curve C over finite field \mathbb{F}_q via

$$\pi(a, b) = (a^q, b^q) \quad \text{and} \quad \pi(P_\infty) = P_\infty.$$

Fact

For point $P \in C(\overline{\mathbb{F}_q})$,

$$\pi(P) \in C(\overline{\mathbb{F}_q}).$$

Fact

For point $P \in C(\mathbb{F}_{q^k})$,

$$\pi^k(P) = P.$$

Let N_k be the number of points on curve C, over finite field \mathbb{F}_{q^k}.

Alternatively, N_k counts the number of points in $C(\overline{\mathbb{F}_q})$ which are fixed by the kth power of the Frobenius map, π^k.
$N_k = |C(\mathbb{F}_{q^k})|$ counts the number of points in $C(\mathbb{F}_q)$ which are fixed by the kth power of the Frobenius map, π^k.

Using this sequence, we define the **zeta function of an algebraic variety**, which can be written several different ways, including as an exponential generating function.

$$Z(C, T) = \exp \left(\sum_{k=1}^{\infty} \frac{N_k T^k}{k} \right) = 1 + \sum_{k \geq 1} H_k T^k$$

$$= \prod_p \frac{1}{1 - T^{\deg p}} \quad \text{where } p \text{ is a prime ideal}$$

$$\zeta(s) = \prod_{p \text{ prime integer}} \frac{1}{1 - p^{-s}} = \sum_{n \geq 1} \frac{1}{n^s}$$
Theorem (Rationality - Weil 1948)

\[
Z(C, T) = \frac{(1 - \alpha_1 T)(1 - \alpha_2 T) \cdots (1 - \alpha_{2g-1} T)(1 - \alpha_{2g} T)}{(1 - T)(1 - qT)}
\]

for complex numbers \(\alpha_i\)'s, where \(g\) is the genus of the curve \(C\). Furthermore, the numerator of \(Z(C, T)\) has integer coefficients.
Theorem (Rationality - Weil 1948)

\[Z(C, T) = \frac{(1 - \alpha_1 T)(1 - \alpha_2 T) \cdots (1 - \alpha_{2g-1} T)(1 - \alpha_{2g} T)}{(1 - T)(1 - qT)} \]

for complex numbers \(\alpha_i \)'s, where \(g \) is the genus of the curve \(C \). Furthermore, the numerator of \(Z(C, T) \) has integer coefficients.

Theorem (Functional Equation - Weil 1948)

\[Z(C, T) = q^{g-1} T^{2g-2} Z(C, 1/qT) \]

\[N_k = p_k[1 + q - \alpha_1 - \cdots - \alpha_{2g}] \]
\[= 1 + q^k - \alpha_1^k - \cdots - \alpha_{2g}^k \]

The Zeta Function of curve \(C \) of genus \(g \), hence the entire sequence of \(\{N_k\}'s, only depends on \(\{q, N_1, N_2, \ldots, N_g\} \).
Specializing to the case of an elliptic curve E, or a genus one curve, a lot more is known and there is additional structure.

Facts

1. *E can be represented as the zero locus in \mathbb{P}^2 of the equation*

 \[y^2 = x^3 + Ax + B \]

 for $A, B \in \mathbb{F}_q$. (if $p \neq 2, 3$)
Elliptic Curves, and a Combinatorial Interpretation of N_k

Specializing to the case of an elliptic curve E, or a genus one curve, a lot more is known and there is additional structure.

Facts

1. *E can be represented as the zero locus in \mathbb{P}^2 of the equation*

 $$y^2 = x^3 + Ax + B$$

 for $A, B \in \mathbb{F}_q$. (if $p \neq 2, 3$)

2. *E has a group structure where two points on E can be added to yield another point on the curve.*
Specializing to the case of an elliptic curve E, or a genus one curve, a lot more is known and there is additional structure.

Facts

1. *E can be represented as the zero locus in \mathbb{P}^2 of the equation*

 \[y^2 = x^3 + Ax + B \]

 for $A, B \in \mathbb{F}_q$. (if $p \neq 2, 3$)

2. *E has a group structure where two points on E can be added to yield another point on the curve.*

3. *The Frobenius map is compatible with the group structure:*

 \[\pi(P \oplus Q) = \pi(P) \oplus \pi(Q). \]

Recall that $\pi(x, y) = (x^q, y^q)$ and

\[\pi^k(P) = P \text{ if and only if } P \in E(\mathbb{F}_{q^k}). \]
Elliptic Curve Group Law Geometrically

Draw Chord/Tangent Line and then reflect about horizontal axis

\[P \oplus Q = R \]
If $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$, then

$$P_1 \oplus P_2 = P_3 = (x_3, y_3)$$

where

1) If $x_1 \neq x_2$ then

$$x_3 = m^2 - x_1 - x_2 \quad \text{and} \quad y_3 = m(x_1 - x_3) - y_1 \quad \text{with} \quad m = \frac{y_2 - y_1}{x_2 - x_1}.$$

2) If $x_1 = x_2$ but ($y_1 \neq y_2$, or $y_1 = 0 = y_2$) then $P_3 = P_\infty$.

3) If $P_1 = P_2$ and $y_1 \neq 0$, then

$$x_3 = m^2 - 2x_1 \quad \text{and} \quad y_3 = m(x_1 - x_3) - y_1 \quad \text{with} \quad m = \frac{3x_1^2 + A}{2y_1}.$$

4) P_∞ acts as the identity element in this addition.
Rationality (Hasse 1933)

\[Z(E, T) = \frac{(1 - \alpha_1 T)(1 - \alpha_2 T)}{(1 - T)(1 - qT)} = \frac{1 - (1 + q - N_1) T + q T^2}{(1 - T)(1 - qT)} \]

for complex numbers \(\alpha_1 \) and \(\alpha_2 \). (In fact \(|\alpha_1| = |\alpha_2| = \sqrt{q} \).)

Functional Equation

\[Z(E, 1/qT) = Z(E, T). \]

\[N_k = p_k[1 + q - \alpha_1 - \alpha_2] = 1 + q^k - \alpha_1^k - \alpha_2^k \]

and the Functional Equation implies

\[\alpha_1 \alpha_2 = q. \]

Thus the entire sequence of \(N_k \)'s, for elliptic curve \(E \), only depends on \(q \) and \(N_1 \).
Theorem (Garsia 2004)

For an elliptic curve, we can write N_k as a polynomial in terms of N_1 and q such that

$$N_k = \sum_{i=1}^{k} (-1)^{i-1} P_{k,i}(q) N_1^i$$

where each $P_{k,i}$ is a polynomial in q with positive integer coefficients.
Theorem (Garsia 2004)

For an elliptic curve, we can write N_k as a polynomial in terms of N_1 and q such that

$$N_k = \sum_{i=1}^{k} (-1)^{i-1} P_{k,i}(q) N_1^i$$

where each $P_{k,i}$ is a polynomial in q with positive integer coefficients.

\[
\begin{align*}
N_2 &= (2 + 2q)N_1 - N_1^2 \\
N_3 &= (3 + 3q + 3q^2)N_1 - (3 + 3q)N_1^2 + N_1^3 \\
N_4 &= (4 + 4q + 4q^2 + 4q^3)N_1 - (6 + 8q + 6q^2)N_1^2 + (4 + 4q)N_1^3 - N_1^4 \\
N_5 &= (5 + 5q + 5q^2 + 5q^3 + 5q^4)N_1 - (10 + 15q + 15q^2 + 10q^3)N_1^2 \\
&\quad + (10 + 15q + 10q^2)N_1^3 - (5 + 5q)N_1^4 + N_1^5
\end{align*}
\]

Question

What is a combinatorial interpretation of these expressions, i.e. of the $P_{k,i}$’s?
And now for something completely different ...
Graph Theory Terminology:

Let $G = (V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A **spanning tree** (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.
Graph Theory Terminology:

Let $G = (V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A **spanning tree** (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

We now consider **directed graphs**, edges are oriented.
Graph Theory Terminology:

Let $G = (V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A **spanning tree** (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

We now consider **directed graphs**, edges are oriented.

Single out one of the vertices, v_0. We call this the **root** of G.
Graph Theory Terminology:

Let $G = (V, E)$ be a finite graph. (We allow multiple edges between vertices, but not loops.)

A **spanning tree** (of an undirected graph) is a connected subgraph without cycles that is incident to all vertices.

We now consider **directed graphs**, edges are oriented.

Single out one of the vertices, v_0. We call this the **root** of G.

A **rooted oriented spanning tree** of G is a spanning tree of the underlying undirected graph, and orientations of edges along the tree are chosen so that all edges point towards the root.
The **Laplacian** matrix of a graph has diagonal entries d_i (outdegree of v_i) and off-diagonal entries $-d_{ij}$ (number of directed edges from v_i to v_j).

Example: let $G = \begin{array}{c}
1 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 & 0 & \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 2 & -2 \\
-1 & 0 & 0 & 0 & 1
\end{array}$ with the root vertex v_0 in red. Then

$L(G) = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 2 & -2 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$. (Rows/Columns indexed as 0, 1, 2, 3, 4)
A Family of Examples

We let W_k denote the wheel graph which consists of k vertices on a circle and a central vertex which is adjacent to every other vertex.

Note that a spanning tree will consist of arcs on the rim and spokes. We construct a family of digraphs (directed with multiple edges allowed) whose vertex set equal the W_k's.
We replace each rim edge with q clockwise edges and 1 counter-clockwise edge.

We replace each spoke with t spokes pointing towards the root.

The (q, t)-wheel graphs $W_k(q, t)$ for $k \geq 1$.

$q = 3$
$t = 2$
Definition

\[\mathcal{W}_k(q, t) = \]

The number of rooted oriented spanning trees in graph \(\mathcal{W}_k(q, t) \).

Theorem (M-2007)

\(\mathcal{W}_k(q, t) \) can be written as a positive bivariate integer polynomial such that the coefficient of \(t^i \) in \(\mathcal{W}_k(q, t) \) equals \(P_{k,i}(q) \) in

\[
N_k = \sum_{i=1}^{k} (-1)^{i-1} P_{k,i}(q) N_1^i.
\]

In other words, \(\mathcal{W}_k(q, -N_1) = N_k \).
The $\mathcal{W}_k(q, t)$’s are integer polynomials

$$\mathcal{W}_k(q, t) =$$

The number of rooted oriented spanning trees in graph $\mathcal{W}_k(q, t)$.

The Laplacian Matrix for $\mathcal{W}_k(q, t)$ is

$$L_k = \begin{bmatrix}
1 + q + t & -q & 0 & \ldots & 0 & -1 & -t \\
-1 & 1 + q + t & -q & 0 & \ldots & 0 & -t \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & -1 & 1 + q + t & -q & 0 & -t \\
0 & \ldots & 0 & -1 & 1 + q + t & -q & -t \\
-q & 0 & \ldots & 0 & -1 & 1 + q + t & -t \\
-t & -t & -t & \ldots & -t & -t & kt
\end{bmatrix}.$$
Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rooted spanning trees is \(\det(L_k)_0 \) where \((L_k)_0 \) is matrix \(L_k \) with the last row and last column deleted.
Proof of Integrality by the Matrix-Tree Theorem

By the Matrix-Tree theorem, the number of directed rooted spanning trees is $\det(L_k)_0$ where $(L_k)_0$ is matrix L_k with the last row and last column deleted.

Let $\overline{M}_1 = [t]$, $\overline{M}_2 = \begin{bmatrix} 1 + q + t & -1 - q \\ -1 - q & 1 + q + t \end{bmatrix}$, and for $k \geq 3$, let \overline{M}_k be the k-by-k “three-line” circulant matrix

$$
\begin{bmatrix}
1 + q + t & -q & 0 & \ldots & 0 & -1 \\
-1 & 1 + q + t & -q & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & -1 & 1 + q + t & -q & 0 \\
0 & \ldots & 0 & -1 & 1 + q + t & -q \\
-q & 0 & \ldots & 0 & -1 & 1 + q + t \\
\end{bmatrix}.
$$

Theorem (M-2007)

$$
\mathcal{W}_k(q, t) = \det \overline{M}_k \quad \text{and} \quad N_k(q, t) = - \det \overline{M}_k|_{t=-N_1}
$$
The W_k’s also are the cardinalities of a sequence of groups

Consider the **quotient group**

$$K(G, v_0) \cong \frac{\mathbb{Z} |V(G)|^{-1}}{\text{Im} (L_k)_0}$$

where $(L_k)_0$ is the Laplacian matrix of graph G with the row and column corresponding to v_0 deleted.

$$|K(G, v_0)| = \# \text{Spanning Trees in Graph } G$$
The \mathcal{W}_k’s also are the cardinalities of a sequence of groups

Consider the **quotient group**

$$K(G, v_0) \cong \mathbb{Z}|V(G)|^{-1}/\text{Im} (L_k)_0$$

where $(L_k)_0$ is the Laplacian matrix of graph G with the row and column corresponding to v_0 deleted.

$$|K(G, v_0)| = \#\text{Spanning Trees in Graph } G$$

This group goes by many names, **critical group of graph** G (w.r.t. v_0) from Biggs.
The \mathcal{W}_k’s also are the cardinalities of a sequence of groups

Consider the **quotient group**

$$K(G, v_0) \cong \mathbb{Z}^{\left|V(G)\right|-1} / \text{Im} \, (L_k)_0$$

where $(L_k)_0$ is the Laplacian matrix of graph G with the row and column corresponding to v_0 deleted.

$$|K(G, v_0)| = \#\text{Spanning Trees in Graph } G$$

This group goes by many names, **critical group of graph** G (w.r.t. v_0) from Biggs. Also known as the **Jacobian** of a graph, studied by Baker-Norine,
The W_k’s also are the cardinalities of a sequence of groups

Consider the **quotient group**

\[K(G, v_0) \cong \mathbb{Z}^{V(G) - 1}/\text{Im} \ (L_k)_0 \]

where \((L_k)_0\) is the Laplacian matrix of graph \(G\) with the row and column corresponding to \(v_0\) deleted.

\[|K(G, v_0)| = \#\text{Spanning Trees in Graph } G \]

This group goes by many names, **critical group of graph** \(G\) (w.r.t. \(v_0\)) from Biggs. Also known as the **Jacobian** of a graph, studied by Baker-Norine, **Group of components** by Lorenzini,
The \mathcal{W}_k’s also are the cardinalities of a sequence of groups

Consider the **quotient group**

$$K(G, v_0) \cong \frac{\mathbb{Z}|V(G)|^{-1}}{\text{Im} \ (L_k)_0}$$

where $(L_k)_0$ is the Laplacian matrix of graph G with the row and column corresponding to v_0 deleted.

$$|K(G, v_0)| = \#\text{Spanning Trees in Graph } G$$

This group goes by many names, **critical group of graph** G (w.r.t. v_0) from Biggs. Also known as the **Jacobian** of a graph, studied by Baker-Norine, **Group of components** by Lorenzini, and **Sandpile group** by Dhar, Gabrielov, among others.
The W_k’s also are the cardinalities of a sequence of groups

Consider the quotient group

$$K(G, v_0) \cong \mathbb{Z}|V(G)|^{-1}/\text{Im } (L_k)_{0}$$

where $(L_k)_{0}$ is the Laplacian matrix of graph G with the row and column corresponding to v_0 deleted.

$$|K(G, v_0)| = \#\text{Spanning Trees in Graph } G$$

This group goes by many names, critical group of graph G (w.r.t. v_0) from Biggs. Also known as the Jacobian of a graph, studied by Baker-Norine, Group of components by Lorenzini, and Sandpile group by Dhar, Gabrielov, among others.

Alternative definition with explicit coset representatives shortly.
The complete graph K_n has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices.
The complete graph K_n has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_n is n^{n-2}.
The complete graph K_n has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_n is n^{n-2}.

Theorem (Lorenzini 1991)

The critical group $K(K_n)$ decomposes as $(\mathbb{Z}/n\mathbb{Z})^{n-2}$.
The complete graph K_n has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_n is n^{n-2}.

Theorem (Lorenzini 1991)

The critical group $\mathcal{K}(K_n)$ decomposes as $(\mathbb{Z}/n\mathbb{Z})^{n-2}$.

For a given family of graphs (e.g. W_k, C_n, P_n, products (such as hypercube Q_n)), can be nontrivial to find $\mathcal{K}(G)$.
The complete graph K_n has n vertices and $\binom{n}{2}$ edges, one between each pair of vertices. The number of spanning trees of K_n is n^{n-2}.

Theorem (Lorenzini 1991)

The critical group $K(K_n)$ decomposes as $(\mathbb{Z}/n\mathbb{Z})^{n-2}$.

For a given family of graphs (e.g. W_k, C_n, P_n, products (such as hypercube Q_n)), can be nontrivial to find $K(G)$.

For example, decomposition of $K(W_k)$ involves Fibonacci numbers (Biggs).
Assign a nonnegative integer value C_i to each vertex v_i (number of chips).

2 Start with vertex v_1.

3 If C_i, the number of chips on v_i, is greater than or equal to the outdegree of v_i, then vertex v_i fires. Otherwise move on to v_{i+1}.

4 If vertex v_i fires, then we take d_i chips off of v_i and distribute them to v_i’s neighbors.

5 Now $C_i := C_i - d_i$ and $C_j := C_j + d_{ij}$ if v_j is a neighbor of v_i.

6 We continue until we get to v_n.
1. Assign a nonnegative integer value C_i to each vertex v_i (number of chips).
2. Start with vertex v_1.
3. If C_i, the number of chips on v_i, is greater than or equal to the outdegree of v_i, then vertex v_i fires. Otherwise move on to v_{i+1}.
4. If vertex v_i fires, then we take d_i chips off of v_i and distribute them to v_i’s neighbors.
5. Now $C_i := C_i - d_i$ and $C_j := C_j + d_{ij}$ if v_j is a neighbor of v_i.
6. We continue until we get to v_n.
7. We then start over with v_1 and repeat.
8. We continue forever or terminate when all $C_i < d_i$.
We consider a variant due to Norman Biggs known as the **Dollar Game**:
We consider a variant due to Norman Biggs known as the **Dollar Game**:

1. We designate one vertex v_0 to be the bank, and allow C_0 to be negative. All the other C_i’s still must be nonnegative.
We consider a variant due to Norman Biggs known as the **Dollar Game**:

1. We designate one vertex v_0 to be the bank, and allow C_0 to be negative. All the other C_i’s still must be nonnegative.

2. To limit extraneous configurations, we presume that the sum $\sum_{i=0}^{\#V-1} C_i = 0$. (Thus in particular, C_0 will be non-positive.)
We consider a variant due to Norman Biggs known as the **Dollar Game**:

1. **We designate one vertex** v_0 **to be the bank, and allow** C_0 **to be negative. All the other** C_i’s **still must be nonnegative.**

2. **To limit extraneous configurations**, we presume that the sum $\sum_{i=0}^{V-1} C_i = 0$. (Thus in particular, C_0 will be non-positive.)

3. **The bank, i.e. vertex** v_0, **is only allowed to fire if no other vertex can fire. Note that since we now allow** C_0 **to be negative,** v_0 **is allowed to fire even when it is smaller than its outdegree.**
A configuration is **stable** if v_0 is the only vertex that can fire.

A configuration C is **recurrent** if there is a firing sequence which will lead back to C.

(Note that this will necessarily require the use of v_0 firing.)

We call a configuration **critical** if it is both stable and recurrent.
A configuration is **stable** if \(v_0 \) is the only vertex that can fire.

A configuration \(C \) is **recurrent** if there is firing sequence which will lead back to \(C \).

(Note that this will necessarily require the use of \(v_0 \) firing.)

We call a configuration **critical** if it is both stable and recurrent.

Theorem (Gabrielov 1993)

For any initial configuration \(C \) with \(\sum_{i=0}^{k} C_i = 0 \) and \(C_i \geq 0 \) for all \(1 \leq i \leq k \), there exists a **unique** critical configuration that can be reached by an allowable firing sequence.
We can define $K(G, \nu_0)$ to be the set of critical configurations, with addition given by $C_1 \oplus C_2 = \overline{C_1 + C_2}$.

Here \oplus signifies the usual pointwise vector addition and \overline{C} represents the unique critical configuration in the same coset as C, modulo the Laplacian.

When ν_0 is understood, we will abbreviate this group as the critical group of graph G, and denote it as $K(G)$.
We can define $K(G, v_0)$ to be the set of critical configurations, with addition given by $C_1 \oplus C_2 = \overline{C_1 + C_2}$.

Here $+$ signifies the usual pointwise vector addition and \overline{C} represents the unique critical configuration in the same coset as C, modulo the Laplacian.

When v_0 is understood, we will abbreviate this group as the critical group of graph G, and denote it as $K(G)$.

Corollary (Gabrielov 1993)

$K(G)$ is an abelian (associative) group.
For example, consider the following two wheels with chip distributions as given. These are both critical configurations.

We do not label the number of chips on the hub vertex since forced.

If we add these together pointwise we obtain

![Diagram of two wheels with chip distributions]
This is not a critical configuration, but by the theorem, reduces to a unique critical configuration.
This last one is critical.
We want to analogize theory of elliptic curves: For example, there is a tower of groups

\[E(\mathbb{F}_q) \subset E(\mathbb{F}_{q^k_1}) \subset E(\mathbb{F}_{q^k_2}) \subset \cdots \subset E(\mathbb{F}_q) \]
Critical Groups of \((q, t)\)-Wheel Graphs

We want to analogize theory of elliptic curves: For example, there is a tower of groups

\[
E(F_q) \subset E(F_{q^{k_1}}) \subset E(F_{q^{k_2}}) \subset \cdots \subset E(F_q)
\]

Understanding the sequence of Critical Groups:

\[
K(W_1(q, t)), \ K(W_2(q, t)), \ K(W_3(q, t)), \ \ldots
\]

The set \(\left\{ \right.\text{Elements of the critical group } K(W_k(q, t)) \left. \right\} \) is a subset of the set of length \(k\) words in alphabet \(\{0, 1, 2, \ldots, q + t\}\).
Example: $[2, 4, 2] \oplus [0, 4, 1] \equiv [1, 0, 4]$ in $W_3(q = 3, t = 2)$ versus

$[2, 4, 2, 2, 4, 2] \oplus [0, 4, 1, 0, 4, 1] \equiv [1, 0, 4, 1, 0, 4]$ in $W_6(q = 3, t = 2)$

Chip-firing is a local process.
Proposition

The map $\psi : w \to www \ldots w$ is an injective group homomorphism between $K(W_{k_1}(q, t))$ and $K(W_{k_2}(q, t))$ whenever $k_1 | k_2$. Here map ψ replaces w with k_2 / k_1 copies of w.
Proposition

The map \(\psi : w \to www \ldots w \) is an injective group homomorphism between \(K(W_{k_1}(q, t)) \) and \(K(W_{k_2}(q, t)) \) whenever \(k_1 \mid k_2 \). Here map \(\psi \) replaces \(w \) with \(k_2/k_1 \) copies of \(w \).

Define \(\rho \) to be the counter-clockwise rotation map on \(K(W_k(q, t)) \).

\[
\rho([C_1, C_2, \ldots, C_k]) = [C_2, C_3, \ldots, C_k, C_1].
\]
Proposition

The map $\psi : w \rightarrow \text{www \ldots w}$ is an injective group homomorphism between $K(W_{k_1}(q,t))$ and $K(W_{k_2}(q,t))$ whenever $k_1 \mid k_2$. Here map ψ replaces w with k_2/k_1 copies of w.

Define ρ to be the counter-clockwise rotation map on $K(W_k(q,t))$.

$$\rho([C_1, C_2, \ldots, C_k]) = [C_2, C_3, \ldots, C_k, C_1].$$

Proposition

The kernel of $(1 - \rho^{k_1})$ acting on $K(W_{k_2}(q,t))$ is isomorphic to the subgroup $K(W_{k_1}(q,t))$ whenever $k_1 \mid k_2$.
Proposition

The kernel of \((1 - \rho^k)\) acting on \(K(W_{k_2}(q, t))\) is isomorphic to the subgroup \(K(W_{k_1}(q, t))\) whenever \(k_1 | k_2\).

We therefore can define a direct limit

\[
K(W(q, t)) \cong \bigcup_{k=1}^{\infty} K(W_k(q, t))
\]

where \(\rho\) provides the transition maps.
Proposition

The kernel of \((1 - \rho^{k_1})\) acting on \(K(W_{k_2}(q, t))\) is isomorphic to the subgroup \(K(W_{k_1}(q, t))\) whenever \(k_1 | k_2\).

We therefore can define a direct limit

\[
K(\overline{W}(q, t)) \cong \bigcup_{k=1}^{\infty} K(W_k(q, t))
\]

where \(\rho\) provides the transition maps.

In particular we obtain

\[
K(W_k(q, t)) \cong \text{Ker}(1 - \rho^k) : K(\overline{W}(q, t)) \rightarrow K(\overline{W}(q, t)).
\]
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.
Shift map ρ is the wheel graph-analogue of the Frobenius map $\\pi$ on elliptic curves.

\begin{equation}
K(W_k(q, t)) \cong \text{Ker}(1 - \rho^k) : K(W(q, t)) \to K(W(q, t)) \quad \text{just as}
\end{equation}

\begin{equation}
E(\overline{\mathbb{F}}_q^k) = \text{Ker}(1 - \pi^k) : E(\overline{\mathbb{F}}_q) \to E(\overline{\mathbb{F}}_q).
\end{equation}
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

\[K(W_k(q, t)) \cong \text{Ker}(1 - \rho^k) : K(W(q, t)) \rightarrow K(W(q, t)) \quad \text{just as} \]
\[E(\mathbb{F}_{q^k}) = \text{Ker}(1 - \pi^k) : E(\mathbb{F}_q) \rightarrow E(\mathbb{F}_q). \]

2 There is a characteristic equation \[\pi^2 - (1 + q - N_1)\pi + q = 0 \] on \(E(\mathbb{F}_q) \), an elliptic curve over the algebraic closure.
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$K(W_k(q, t)) \cong \text{Ker}(1 - \rho^k) : K(W(q, t)) \to K(W(q, t)) \quad \text{just as} \quad E(F_{q^k}) = \text{Ker}(1 - \pi^k) : E(F_q) \to E(F_q).$$

2 There is a characteristic equation $\pi^2 - (1 + q - N_1)\pi + q = 0$ on $E(F_q)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^2 - (1 + q + t)\rho + q = 0$ on $K(W(q, t))$.
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

$$K(W_k(q, t)) \cong Ker(1 - \rho^k) : K(W(q, t)) \to K(W(q, t))$$

just as

$$E(F_{q^k}) = Ker(1 - \pi^k) : E(F_q) \to E(F_q).$$

2 There is a characteristic equation $\pi^2 - (1 + q - N_1)\pi + q = 0$ on $E(\overline{F}_q)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^2 - (1 + q + t)\rho + q = 0$ on $K(W(q, t))$. (Linear Algebraic Techniques suffice)
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1. $K(W_k(q, t)) \cong \text{Ker}(1 - \rho^k) : K(W(q, t)) \to K(W(q, t))$ just as $E(\mathbb{F}_{q^k}) = \text{Ker}(1 - \pi^k) : E(\mathbb{F}_q) \to E(\mathbb{F}_q)$.

2. There is a characteristic equation $\pi^2 - (1 + q - N_1)\pi + q = 0$ on $E(\overline{\mathbb{F}_q})$, an elliptic curve over the algebraic closure.

 We get an analogous equation $\rho^2 - (1 + q + t)\rho + q = 0$ on $K(W(q, t))$. (Linear Algebraic Techniques suffice)

3. Both the collection of $E(\mathbb{F}_{q^k})$'s and $K(W_k(q, t))$'s are abelian groups which decompose into at most two cyclic subgroups.
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1. The following equations hold:

\[
K(W_k(q, t)) \cong \ker(1 - \rho^k) : K(W(q, t)) \to K(W(q, t)) \quad \text{just as}
\]

\[
E(F_{q^k}) = \ker(1 - \pi^k) : E(F_q) \to E(F_q).
\]

2. There is a characteristic equation $\pi^2 - (1 + q - N_1)\pi + q = 0$ on $E(F_q)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^2 - (1 + q + t)\rho + q = 0$ on $K(W(q, t))$. (Linear Algebraic Techniques suffice)

3. Both the collection of $E(F_{q^k})$’s and $K(W_k(q, t))$’s are abelian groups which decompose into at most two cyclic subgroups. (Proof via the Smith normal form of Laplacian matrix.)
Shift map ρ is the wheel graph-analogue of the Frobenius map π on elliptic curves.

1

\[K(W_k(q, t)) \cong \text{Ker}(1 - \rho^k) : K(W(q, t)) \to K(W(q, t)) \]

just as

\[E(\mathbb{F}_{q^k}) = \text{Ker}(1 - \pi^k) : E(\mathbb{F}_q) \to E(\mathbb{F}_q). \]

2 There is a characteristic equation $\pi^2 - (1 + q - N_1)\pi + q = 0$ on $E(\mathbb{F}_q)$, an elliptic curve over the algebraic closure.

We get an analogous equation $\rho^2 - (1 + q + t)\rho + q = 0$ on $K(W(q, t))$. (Linear Algebraic Techniques suffice)

3 Both the collection of $E(\mathbb{F}_{q^k})$’s and $K(W_k(q, t))$’s are abelian groups which decompose into at most two cyclic subgroups. (Proof via the Smith normal form of Laplacian matrix.)

4 One last surprising connection ...

Gregg Musiker (MIT/MSRI)
Elliptic Curves and Chip-Firing
December 3, 2009 32 / 46
The Group $\bar{K}(\bar{W}(q, t))$ (the direct limit of the $K(W_k(q, t))$’s) contains the subgroup $\mathbb{Z}/n\mathbb{Z}$ for all $n \geq 1$, and

$\bar{K}(\bar{W}(q, t))$ contains the subgroup $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if and only if n and q are coprime.
4. The Group $K(\overline{W}(q, t))$ (the direct limit of the $K(W_k(q, t))$'s) contains the subgroup $\mathbb{Z}/n\mathbb{Z}$ for all $n \geq 1$, and

$K(\overline{W}(q, t))$ contains the subgroup $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if and only if n and q are coprime.

(Analogous to $E(\overline{F_q})$ when E is an ordinary elliptic curve.)
4 The Group $K(\overline{W}(q, t))$ (the direct limit of the $K(W_k(q, t))$’s) contains the subgroup $\mathbb{Z}/n\mathbb{Z}$ for all $n \geq 1$, and $K(\overline{W}(q, t))$ contains the subgroup $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if and only if n and q are coprime.

(Analogous to $E(\overline{F_q})$ when E is an ordinary elliptic curve.)

What does the proof use?
4. The Group $K(\overline{W}(q, t))$ (the direct limit of the $K(W_k(q, t))$’s) contains the subgroup $\mathbb{Z}/n\mathbb{Z}$ for all $n \geq 1$, and $K(\overline{W}(q, t))$ contains the subgroup $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if and only if n and q are coprime.

(Analogous to $E(\overline{F}_q)$ when E is an ordinary elliptic curve.)

What does the proof use?

Question

Given an integer $n \geq 1$, does there exist a $k \geq 1$ such that n divides the kth Fibonacci number?
4 The Group $K(\overline{W}(q, t))$ (the direct limit of the $K(W_k(q, t))$'s) contains the subgroup $\mathbb{Z}/n\mathbb{Z}$ for all $n \geq 1$, and $K(\overline{W}(q, t))$ contains the subgroup $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ if and only if n and q are coprime.

(Analogous to $E(\overline{F}_q)$ when E is an ordinary elliptic curve.)

What does the proof use?

Question

Given an integer $n \geq 1$, does there exist a $k \geq 1$ such that n divides the kth Fibonacci number?

Answer provided by a result of D.D Wall from 1960.
Lemma (Wall 1960)

The sequence \(\{F_k \mod n : k \in \mathbb{Z}\} \) is periodic, and \(F_k \equiv 0 \mod n \) for some \(k \geq 1 \).

Proof. Finite number \((n^2)\) of possibilities for a window of length two, and an infinite number of \(k \). Thus there will be two identical windows.
Lemma (Wall 1960)

The sequence \(\{F_k \mod n : k \in \mathbb{Z}\} \) is periodic, and \(F_k \equiv 0 \mod n \) for some \(k \geq 1 \).

Proof. Finite number \((n^2)\) of possibilities for a window of length two, and an infinite number of \(k \). Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain periodicity.
Lemma (Wall 1960)

The sequence \(\{ F_k \pmod n : k \in \mathbb{Z} \} \) is periodic, and \(F_k \equiv 0 \pmod n \) for some \(k \geq 1 \).

Proof. Finite number \((n^2) \) of possibilities for a window of length two, and an infinite number of \(k \). Thus there will be two identical windows.

Using linear recurrence in both directions, we obtain periodicity.

Letting \(F_1 = F_2 = 1 \) and running recurrence backwards, \(F_0 = 0 \). Thus \(F_{k_0} \equiv 0 \pmod n \) for some \(k_0 \geq 1 \) too.
Theorem (M- 2009)

For \(k \geq 3 \), the Smith normal form of \((L_k)_0\) is equivalent to a direct sum of the identity matrix and

\[
\begin{bmatrix}
q\hat{F}_{2k-4} + 1 & q\hat{F}_{2k-2} \\
\hat{F}_{2k-2} & \hat{F}_{2k} - 1
\end{bmatrix} \equiv \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}, \quad d_1|d_2
\]

where \(\hat{F}_k \) denotes a bivariate analogue of the Fibonacci numbers:

We let \(S \) range over all subsets \(\{1, 2, \ldots, 2k\} \) with no two consecutive elements, and define

\[
\hat{F}_{2k}(q, t) = \sum_S q^\# \text{ even elements in } S \cdot t^{k-\#S}.
\]
Theorem (M- 2009)

For $k \geq 3$, the Smith normal form of $(L_k)_0$ is equivalent to a direct sum of the identity matrix and

$$
\begin{bmatrix}
q\hat{F}_{2k-4} + 1 & q\hat{F}_{2k-2} \\
\hat{F}_{2k-2} & \hat{F}_{2k} - 1
\end{bmatrix} \equiv \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}, \quad d_1 | d_2
$$

where \hat{F}_k denotes a bivariate analogue of the Fibonacci numbers:

We let S range over all subsets $\{1, 2, \ldots, 2k\}$ with no two consecutive elements, and define

$$
\hat{F}_{2k}(q, t) = \sum_{S} q^{\# \text{ even elements in } S} t^{k-\#S}.
$$

The \hat{F}_k's satisfy the recurrence

$$
\hat{F}_{2k+2} = (1 + q + t)\hat{F}_{2k} - q\hat{F}_{2k-2}.
$$
Factorizations of N_k and Elliptic Cyclotomic Polynomials

$$\mathcal{W}_k(q, t) = -N_k|_{N_1 = -t} = \sum_{i=1}^{k} P_{k,i}(q) t^i \quad \text{for all } k \geq 1.$$

Let $M_k = \overline{M}_k|_{t=-N_1}$.

Corollary (M - 2007)

The sequence of integers $N_k = \# E(\mathbb{F}_{q^k})$ satisfies the relation

$$N_k = -\det M_k \quad \text{for all } k \geq 1.$$
We have a determinantal formula for N_k, and

Combinatorial interpretations for the summands when we write N_k as an alternating sum in powers of N_1
We have a determinantal formula for N_k, and

Combinatorial interpretations for the summands when we write N_k as an alternating sum in powers of N_1

We now look at factorizations of N_k into $\mathbb{Z}[q, N_1]$ polynomials.

e.g. $N_2 = N_1 \left(2 + 2q - N_1 \right)$

Motivates a combinatorial interpretation of $E(\mathbb{F}_{q^k})$ as Cartesian Product of smaller subsets.
\[N_2 = N_1 \left(2 + 2q - N_1 \right) \]
\[N_3 = N_1 \left(3 + 3q + 3q^2 \right) - (3 + 3q) N_1 + N_1^2 \]
\[N_4 = N_1 \left(2 + 2q - N_1 \right) \left(2q^2 + 2 \right) - (2q + 2) N_1 + N_1^2 \]
\[N_5 = N_1 \left(5 + 5q + 5q^2 + 5q^3 + 5q^4 \right) - (10 + 15q + 15q^2 + 10q^3) N_1 \]
\[\quad + \left(10 + 15q + 10q^2 \right) N_1^2 - (5 + 5q) N_1^3 + N_1^4 \]
\[N_6 = N_1 \left(2 + 2q - N_1 \right) \left(3 + 3q + 3q^2 \right) - (3 + 3q) N_1 + N_1^2 \]
\[\times \left(q^2 - q + 1 \right) - (q + 1) N_1 + N_1^2 \]
Factoring N_k in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote as $ECyc_d$, in N_1 and q, only depending on d such that

$$N_k(N_1, q) = \prod_{d|k} ECyc_d.$$

Compare with $1 - x^k = \prod_{d|k} Cyc_d(x)$.

Gregg Musiker (MIT/MSRI) Elliptic Curves and Chip-Firing December 3, 2009 39 / 46
Factoring N_k in general:

Theorem (M- 2007)

There exists integral polynomials, which we will denote as $ECyc_d$, in N_1 and q, only depending on d such that

$$N_k(N_1, q) = \prod_{d|k} ECyc_d.$$

Compare with $1 - x^k = \prod_{d|k} Cyc_d(x)$.

We call these **Elliptic Cyclotomic Polynomials**.

Definition

$ECyc_d(q, N_1) = Cyc_d(\alpha_1)Cyc_d(\alpha_2)$ where α_1 and α_2 are the two complex roots of quadratic $T^2 - (1 + q - N_1)T + q$, and

$$Cyc_d(x) = \prod_{e|d} (1 - x^e)^{\mu(d/e)}.$$
\[ECyc_1 = N_1 \]
\[ECyc_2 = 2 + 2q - N_1 \]
\[ECyc_3 = (3 + 3q + 3q^2) - (3 + 3q)N_1 + N_1^2 \]
\[ECyc_4 = (2q^2 + 2) - (2q + 2)N_1 + N_1^2 \]
\[ECyc_5 = (5 + 5q + 5q^2 + 5q^3 + 5q^4) - (10 + 15q + 15q^2 + 10q^3)N_1 + (10 + 15q + 10q^2)N_1^2 - (5 + 5q)N_1^3 + N_1^4 \]
\[ECyc_6 = (q^2 - q + 1) - (q + 1)N_1 + N_1^2 \]

Proposition (M- 2007)

\[ECyc_d \bigg|_{N_1 = 0} = Cyc_d(1) \cdot Cyc_d(q) \]

where \(Cyc_1(1) = 0 \), \(Cyc_d(1) = p \) if \(d = p^k \) and \(Cyc_d(1) \) equals 1 otherwise.
Conjecture

For $d \geq 2$, $ECyc_d(q, N_1) = Cyc_d(1) \cdot Cyc_d(q) + \frac{\phi(d)}{\phi(d)} \sum_{i=1}^{\phi(d)} (-1)^i Q_{i,d}(q) N_1^i$

where $Q_{i,d}$ is a univariate polynomial with positive integer coefficients.
For $d \geq 2$, $ECyc_d(q, N_1) = Cyc_d(1) \cdot Cyc_d(q) + \sum_{i=1}^{\phi(d)} (-1)^i Q_{i,d}(q) N_1^i$

where $Q_{i,d}$ is a univariate polynomial with positive integer coefficients.

True for $2 \leq d \leq 104$.
Conjecture

For $d \geq 2$, $ECyc_d(q, N_1) = Cyc_d(1) \cdot Cyc_d(q) + \sum_{i=1}^{\phi(d)} (-1)^i Q_{i,d}(q)N_1^i$

where $Q_{i,d}$ is a univariate polynomial with positive integer coefficients.

True for $2 \leq d \leq 104$.

However, Conjecture fails for $d = 105$.
 Nonetheless, we can give a geometric interpretation of the values $ECyc_d(q, N_1)$ for a given q and $N_1 = |E(\mathbb{F}_q)|$.
Nonetheless, we can give a geometric interpretation of the values $ECyc_d(q, N_1)$ for a given q and $N_1 = |E(F_q)|$.

Theorem (M-2007)

$$ECyc_d(q, N_1) = \left| \text{Ker } Cyc_d(\pi) : E(F_q) \circ \right|$$

where $Cyc_d(\pi)$ denotes the isogeny obtained from the dth Cyclotomic polynomial of the Frobenius map.

$\text{Ker } M = \{ P \in E(F_q) : M(P) = P_{\infty} \}$
Variant of earlier discussion: Let $G = (V, E)$ be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.
Variant of earlier discussion: Let $G = (V, E)$ be any \textbf{undirected} graph.

A \textbf{chip configuration} C is an assignment of integers to each vertex.

A \textbf{chip-firing move} is a choice of a vertex v_i. v_i gives d_{ij} chips to each of its neighbors v_j. Such chip configurations are also called \textbf{divisors}.

(\textit{Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.})
Variant of earlier discussion: Let $G = (V, E)$ be any undirected graph.

A **chip configuration** C is an assignment of integers to each vertex.

A **chip-firing move** is a choice of a vertex v_i. v_i gives d_{ij} chips to each of its neighbors v_j. Such chip configurations are also called **divisors**. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

Definition

The **degree** of a divisor $D = \sum_{i=1}^{n} C_i v_i$ is $\sum_{i=1}^{n} C_i$.

D is **effective** if $C_i \geq 0$ for all i.
Variant of earlier discussion: Let $G = (V, E)$ be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.

A chip-firing move is a choice of a vertex v_i. v_i gives d_{ij} chips to each of its neighbors v_j. Such chip configurations are also called divisors. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

Definition

The degree of a divisor $D = \sum_{i=1}^{n} C_i v_i$ is $\sum_{i=1}^{n} C_i$.

D is effective if $C_i \geq 0$ for all i.

Two divisors D_1 and D_2 are said to be linearly equivalent $(D_1 \sim D_2)$ if D_2 can be reached from D_1 by a sequence of chip-firing moves.
From Chip-Firing to Tropical Geometry

Variant of earlier discussion: Let $G = (V, E)$ be any undirected graph.

A chip configuration C is an assignment of integers to each vertex.

A chip-firing move is a choice of a vertex v_i. v_i gives d_{ij} chips to each of its neighbors v_j. Such chip configurations are also called divisors. (Like algebraic geometric definition where a divisor is a formal \mathbb{Z}-linear combination of points on a curve.)

Definition

The degree of a divisor $D = \sum_{i=1}^{n} C_i v_i$ is $\sum_{i=1}^{n} C_i$.

D is effective if $C_i \geq 0$ for all i.

Two divisors D_1 and D_2 are said to be linearly equivalent ($D_1 \sim D_2$) if D_2 can be reached from D_1 by a sequence of chip-firing moves.

Equivalently, $D_1 - D_2$ is a \mathbb{Z}-sum of columns of the Laplacian matrix $L(G)$.

Gregg Musiker (MIT/MSRI)
Elliptic Curves and Chip-Firing
December 3, 2009
43 / 46
Definition

The Linear System of D, denoted as $|D|$, is the set
$\{D' : D' \sim D$ and D' is effective.$\}$.

The following definitions are from Baker-Norine.

1. Let $K(G) = [(\text{deg } v_1) - 2, (\text{deg } v_2) - 2, \ldots, (\text{deg } v_n) - 2]$, the canonical divisor of G.
The Linear System of D, denoted as $|D|$, is the set
$\{D' : D' \sim D \text{ and } D' \text{ is effective}\}$.

The following definitions are from Baker-Norine.

1. Let $K(G) = [(\text{deg } v_1) - 2, (\text{deg } v_2) - 2, \ldots, (\text{deg } v_n) - 2]$, the canonical divisor of G.

2. $g(G) = |E| - |V| + 1$, the genus of G. Also the 1st Betti number of the graph as a 1-complex.
The **Linear System of** D, denoted as $|D|$, is the set
\{ $D' : D' \sim D$ and D' is effective. \}.

The following definitions are from Baker-Norine.

1. Let $K(G) = [(deg v_1) - 2, (deg v_2) - 2, \ldots , (deg v_n) - 2]$, the **canonical divisor** of G.

2. $g(G) = |E| - |V| + 1$, the **genus** of G. Also the 1st Betti number of the graph as a 1-complex.

3. The **rank** of D, $r(D)$, is the biggest $k \geq 0$ such that for all effective E of degree k, $|D - E| \neq \emptyset$ if such a k exists.
(By convention $r(D) = -1$ if $|D| = \emptyset$.)
The Linear System of D, denoted as $|D|$, is the set
$\{D' : D' \sim D \text{ and } D' \text{ is effective}\}$.

The following definitions are from Baker-Norine.

1. Let $K(G) = [(\deg v_1) - 2, (\deg v_2) - 2, \ldots, (\deg v_n) - 2]$, the canonical divisor of G.
2. $g(G) = |E| - |V| + 1$, the genus of G. Also the 1st Betti number of the graph as a 1-complex.
3. The rank of D, $r(D)$, is the biggest $k \geq 0$ such that for all effective E of degree k, $|D - E| \neq \emptyset$ if such a k exists. (By convention $r(D) = -1$ if $|D| = \emptyset$.)

Theorem (Baker-Norine 2006 - Riemann-Roch Theorem for Graphs)

$$r(D) - r(K - D) = \deg D - g + 1.$$
This has motivated search for further analogies between algebraic curve theory and graph theory.
This has motivated search for further analogies between algebraic curve theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Corollary

Riemann-Roch Theorem for Tropical Curves (Metric graphs satisfying certain balancing conditions)
From Chip-Firing to Tropical Geometry

This has motivated search for further analogies between algebraic curve theory and graph theory.

Gathmann-Kerber and Mikhalkin-Zharkov showed

Corollary

Riemann-Roch Theorem for Tropical Curves (Metric graphs satisfying certain balancing conditions)

With Christian Haase and Josephine Yu:

1. We explicitly describe cell structures of $|D|$ as a polyhedral cell complex
2. Show how to embed $|D|$ into tropical projective space.
3. Also get generalization of chip-firing to metric graphs, called weighted chip-firing games.

Thanks For Coming

http://math.mit.edu/~musiker/CGs.pdf

