Applications of New F-polynomial Formulas in terms of C-Vectors

Meghal Gupta (MIT) and Gregg Musiker* (University of Minnesota)

Cluster Algebras and Related Topics, AMS Spring Eastern Sectional 2019
April 13, 2019
http://math.umn.edu/~musiker/Fpoly19.pdf
Thanks to NSF Grant DMS-1745638. Part of this work done during 2018 REU in Combinatorics at University of Minnesota, Twin Cities.
arXiv:1812.01910 and forthcoming work

Quivers and Exchange Matrices with Principal Coefficients

Given a quiver Q (i.e. a directed graph) with n vertices, we build an n-by- n skew-symmetric matrix $B_{Q}=\left[b_{i j}\right]_{i=1, j=1}^{n}$ whose entries are

$$
b_{i j}=(\# \text { arrows from } i \text { to } j)-(\# \text { arrows from } j \text { to } i)
$$

Note: More generally, we can let B_{Q} be skew-symmetrizable, meaning there exists a diagonal matrix D with positive integer entries such that $D B_{Q}$ is skew-symmetric, i.e. satisfies $\left(D B_{Q}\right)^{T}=-D B_{Q}$. However, for this talk we will focus on the quiver, i.e. the skew-symmetric, case.

We build the corresponding $2 n$-by- n exchange matrix with principal coefficients via $\widetilde{B_{Q}}=\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, where I_{n} denotes the n-by- n identity matrix.

Equivalently, $\widetilde{B_{Q}}$ corresponds to the exchange matrix of the framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ with a single arrow from $i^{\prime} \rightarrow i$ for each $1 \leq i \leq n$.

Quivers and Exchange Matrices with Principal Coefficients

$$
\begin{aligned}
& \text { If } Q=1 \rightarrow 2 \text {, then } B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \widetilde{Q}=\begin{array}{ll}
1^{\prime} & 2^{\prime} \\
\downarrow & \downarrow \\
1 \rightarrow 2
\end{array} \text { and } \widetilde{B_{Q}}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] . \\
& \text { If } Q=1 \Rightarrow 2 \text {, then } B_{Q}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right], \widetilde{Q}=\begin{array}{ll}
1^{\prime} & 2^{\prime} \\
\downarrow & \downarrow \\
1 \Rightarrow 2
\end{array} \text { and } \widetilde{B_{Q}}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Quiver Mutation

Given a quiver Q and its vertex j, we can define $Q^{\prime}=\mu_{j} Q$, the mutation of \mathbf{Q} at \mathbf{j}, by a 3 step process:

1) For any 2-path $i \rightarrow j \rightarrow k$, add a new arrow i, k.
2) Reverse the direction of all arrows incident to j.
3) Delete any 2-cycle $i^{i} k$ created from the above two steps.

Examples: If $Q=1 \Rightarrow 2 \leftarrow 3<4$, then

$$
\begin{array}{ll}
\mu_{1} Q=1 \Leftarrow 2 \leftarrow 3 \leftarrow 4, & \mu_{2} Q=1<2 \rightarrow 3 \\
\mu_{3} Q=1 \Rightarrow 2 \rightarrow 3 \rightarrow 4, & \mu_{4} Q=1 \Rightarrow 2
\end{array}
$$

Note: Mutation is an involution, meaning that $\mu_{j}^{2} Q=Q$ for any vertex j.

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{1} Q=1 \leftarrow 2 \leftarrow 3<4, \quad \mu_{1} B_{Q}=\left[\begin{array}{cccc}
0 & -2 & 0 & 0 \\
2 & 0 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{2} Q=1<2 \rightarrow 34, \quad \mu_{2} B_{Q}=\left[\begin{array}{cccc}
0 & -2 & 0 & 2 \\
2 & 0 & 1 & -1 \\
0 & -1 & 0 & 0 \\
-2 & 1 & 0 & 0
\end{array}\right] .
$$

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{3} Q=1 \Rightarrow 2 \rightarrow 3 \rightarrow 4, \quad \mu_{3} B_{Q}=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Exchange Matrix Mutation

Quiver mutation induces an analogous dynamic on exchange matrices B_{Q}. We define $\left[b_{i j}^{\prime}\right]=B_{Q}^{\prime}=\mu_{k} B_{Q}$, the mutation of $B_{Q}=\left[b_{i j}\right]$ at \mathbf{k}, by

$$
b_{i j}^{\prime}=\left\{\begin{array}{l}
-b_{i j} \text { if } i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-b_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

using $[\alpha]_{+}=\max (\alpha, 0)$.
Examples: If $Q=1 \Rightarrow 2<3<4, B_{Q}=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ -2 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0\end{array}\right]$, then

$$
\mu_{4} Q=1 \Rightarrow 2,3 \rightarrow 4, \quad \mu_{4} B_{Q}=\left[\begin{array}{cccc}
0 & 2 & 0 & 0 \\
-2 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

Examples of mutation with principal coefficients

As framed quivers (for the case of a type A_{2} quiver):

As $2 n$-by- n exchange matrices:

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] } & \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] .
\end{aligned}
$$

Examples of mutation with principal coefficients

Starting with the framed quiver for the case of the Kronecker quiver

As $2 n$-by- n exchange matrices:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] } \rightarrow{ }^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right] \\
& \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow^{\mu_{2}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
7 & -6 \\
6 & -5
\end{array}\right] \rightarrow^{\mu_{1}}\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
-7 & 8 \\
-6 & 7
\end{array}\right] \rightarrow \ldots
\end{aligned}
$$

Cluster seeds and their mutation

A seed for a cluster algebra is defined as a choice of a quiver (equivalently an exchange matrix) on N vertices and a choice of a cluster $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ where the x_{i} are formal variables, called cluster variables.

We define cluster mutation alongside quiver mutation yielding (a priori) rational functions in $\mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ defined by

$$
\begin{gathered}
\left\{x_{1}, \ldots, x_{N}\right\} \rightarrow^{\mu_{k}}\left\{x_{1}, \ldots, x_{N}\right\} \cup\left\{x_{k}^{\prime}\right\} \backslash\left\{x_{k}\right\} \text { where } \\
x_{k}^{\prime}=\frac{\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{k=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}=\frac{\prod_{i \rightarrow k} x_{i}+\prod_{k \rightarrow i} x_{i}}{x_{k}}
\end{gathered}
$$

using the exchange matrix B_{Q}, or equivalently the arrows in the quiver Q.

Cluster seeds and their mutation

A seed for a cluster algebra is defined as a choice of a quiver (equivalently an exchange matrix) on N vertices and a choice of a cluster $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ where the x_{i} are formal variables, called cluster variables.

We define cluster mutation alongside quiver mutation yielding (a priori) rational functions in $\mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ defined by

$$
\begin{gathered}
\left\{x_{1}, \ldots, x_{N}\right\} \rightarrow^{\mu_{k}}\left\{x_{1}, \ldots, x_{N}\right\} \cup\left\{x_{k}^{\prime}\right\} \backslash\left\{x_{k}\right\} \text { where } \\
x_{k}^{\prime}=\frac{\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{k=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}=\frac{\prod_{i \rightarrow k} x_{i}+\prod_{k \rightarrow i} x_{i}}{x_{k}}
\end{gathered}
$$

using the exchange matrix B_{Q}, or equivalently the arrows in the quiver Q.
Theorem (Fomin-Zelevinsky 2001) The Laurent Phenomenon holds for all cluster variables, namely the rational functions resulting from iterating cluster mutation are in fact Laurent polynomials, i.e. $\frac{P\left(x_{1}, \ldots, x_{N}\right)}{x_{1}^{d_{1} \ldots x_{n}^{d_{n}}}}$ where P is a polynomial with integer coefficients and each d_{i} is a nonnegative integer a

F-polynomials

If we start with a framed quiver $\widetilde{Q}=Q \cup\left\{1^{\prime}, 2^{\prime}, \ldots, n^{\prime}\right\}$ and the intial cluster $\left\{x_{1}, \ldots, x_{N}\right\}=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$, we iterate cluster mutation with the extra restriction disallowing mutation at vertices i^{\prime}.

Consequently, the binomial exchange relation for cluster mutation

$$
x_{k}^{\prime}=\frac{\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{k=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}=\frac{\prod_{i \rightarrow k} x_{i}+\prod_{k \rightarrow i} x_{i}}{x_{k}}
$$

will involve $y_{1}, y_{2}, \ldots, y_{n}$ in the numerator, but never in the denominator.
By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

F-polynomials

$$
x_{k}^{\prime}=\frac{\prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{k=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}}{x_{k}}=\frac{\prod_{i \rightarrow k} x_{i}+\prod_{k \rightarrow i} x_{i}}{x_{k}}
$$

By letting $x_{1}=x_{2}=\cdots=x_{n}=1$, and iterating cluster mutation, we replace cluster variables (which are Laurent polynomials in x_{i} 's and y_{i} 's) with polynomials in $y_{1}, y_{2}, \ldots, y_{n}$, which are called \mathbf{F}-polynomials.

Example:

$$
\begin{gathered}
\left\{F_{1}, F_{2}\right\}=\{1,1\} \rightarrow^{\mu_{1}}\left\{y_{1}+1,1\right\} \rightarrow^{\mu_{2}}\left\{y_{1}+1, y_{1} y_{2}+y_{1}+1\right\} \\
\rightarrow^{\mu_{1}}\left\{y_{2}+1, y_{1} y_{2}+y_{1}+1\right\} \rightarrow^{\mu_{2}}\left\{y_{2}+1,1\right\} \rightarrow^{\mu_{1}}\{1,1\}
\end{gathered}
$$

c-vectors

Given a framed quiver \widetilde{Q} and its images under a sequence of mutations, we define the c-vectors associated to the seed t by

$$
\mathbf{c}_{\mathbf{j}, \mathbf{t}}=\left[c_{1 j}, c_{2 j}, \ldots, c_{n j}\right]^{T}
$$

where $c_{i j}=$ \#arrows from $i^{\prime} \rightarrow j$. Equivalently, $\mathbf{c}_{\mathbf{j}, \mathrm{t}}$ is the j th column of the bottom half of the $2 n$-by- n exchange matrix associated to seed t.

In particular, the initial c-vectors, for seed t_{0}, equal unit vectors

$$
\mathbf{c}_{1, \mathbf{t}_{\mathbf{0}}}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, \mathbf{c}_{\mathbf{n}, \mathbf{t}_{0}}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right],
$$

and then recursively c-vectors mutate alongside quivers and exchange matrices. Letting $\mathbf{c}_{\mathbf{j}, \mu_{\mathbf{k}} \mathbf{t}}=\left[c_{1 j}^{\prime}, c_{2 j}^{\prime}, \ldots, c_{n j}^{\prime}\right]^{T}$ for each $1 \leq j \leq n$, we have

$$
c_{i j}^{\prime}=\left\{\begin{array}{l}
-c_{i j}=-c_{i k} \text { if } j=k \\
c_{i j}+\left[c_{i k}\right]_{+}\left[b_{k j}\right]_{+}-\left[-c_{i k}\right]_{+}\left[-b_{k j}\right]_{+} \text {otherwise }
\end{array}\right.
$$

c-vectors for $1 \rightarrow 2$

$$
\mathbf{c}_{1, \mathbf{t}_{0}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{0}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{2}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right]
$$

$$
\mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{3}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{4}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{5}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& t_{0}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & -1 \\
1 & -1
\end{array}\right] \\
& \rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & -1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

c-vectors for $1 \Rightarrow 2$

$$
\begin{gathered}
t_{0}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \rightarrow^{\mu_{1}} t_{1}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-1 & 2 \\
0 & 1
\end{array}\right] \rightarrow \rightarrow^{\mu_{2}} t_{2}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
3 & -2 \\
2 & -1
\end{array}\right] \\
\rightarrow^{\mu_{1}} t_{3}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-3 & 4 \\
-2 & 3
\end{array}\right] \rightarrow^{\mu_{2}} t_{4}=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
5 & -4 \\
4 & -3
\end{array}\right] \rightarrow^{\mu_{1}} t_{5}=\left[\begin{array}{cc}
0 & -2 \\
2 & 0 \\
-5 & 6 \\
-4 & 5
\end{array}\right] \rightarrow \ldots \\
\mathbf{c}_{\mathbf{1}, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{\mathbf{1}, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{\mathbf{1}, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
\end{gathered}
$$

c-vector Sign Coherence

For $1 \rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

For $1 \Rightarrow 2$ and $\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} \cdots$,

$$
\mathbf{c}_{1, \mathbf{t}_{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{2}}=\left[\begin{array}{l}
-2 \\
-1
\end{array}\right] \mathbf{c}_{1, \mathbf{t}_{3}}=\left[\begin{array}{l}
-3 \\
-2
\end{array}\right], \mathbf{c}_{2, \mathbf{t}_{4}}=\left[\begin{array}{l}
-4 \\
-3
\end{array}\right], \mathbf{c}_{1, \mathbf{t}_{5}}=\left[\begin{array}{l}
-5 \\
-4
\end{array}\right], \ldots
$$

Theorem (Derksen-Weyman-Zelevinsky 2010) Each c-vector consists exclusively of nonnegative entries or exclusively of nonpositive entries.

Sign Coherence implies we can assign a sign $\epsilon_{j, t_{r}} \in\{ \pm 1\}$ to each $\mathbf{c}_{\mathbf{j}, \mathbf{t}_{\mathbf{r}}}$.
Note: Conjectured by Fomin-Zelevinsky in Cluster Algebras IV, 2006, and proven in the skew-symmetrizable case by Gross-Hacking-Keel-Kontsevich.

Three definitions of g-vectors

1) For a framed quiver \widetilde{Q} with exchange matrix $\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, define a \mathbb{Z}^{n}-grading by $\operatorname{deg}\left(x_{i}\right)=\mathbf{e}_{i}$ and $\operatorname{deg}\left(y_{j}\right)=-\mathbf{b}_{\mathbf{j}}$, where $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ is the initial cluster, \mathbf{e}_{i} is the i th unit vector and $\mathbf{b}_{\mathbf{j}}$ is the j th column of B_{Q}.

Three definitions of g-vectors

1) For a framed quiver \widetilde{Q} with exchange matrix $\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, define a \mathbb{Z}^{n}-grading by $\operatorname{deg}\left(x_{i}\right)=\mathbf{e}_{i}$ and $\operatorname{deg}\left(y_{j}\right)=-\mathbf{b}_{\mathbf{j}}$, where $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ is the initial cluster, \mathbf{e}_{i} is the i th unit vector and $\mathbf{b}_{\mathbf{j}}$ is the j th column of B_{Q}.

Then for any cluster variable x^{\prime} written as a Laurent polynomial in $\mathbb{Q}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y_{1}, y_{2}, \ldots, y_{n}\right]$, the \mathbb{Z}^{n}-grading of each such Laurent monomial of x^{\prime} coincide. This common multidegree is defined to be the g-vector attached to x^{\prime}. (See Section 6 of Cluster Algebras IV.)

Three definitions of g-vectors

1) For a framed quiver \widetilde{Q} with exchange matrix $\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, define a \mathbb{Z}^{n}-grading by $\operatorname{deg}\left(x_{i}\right)=\mathbf{e}_{i}$ and $\operatorname{deg}\left(y_{j}\right)=-\mathbf{b}_{\mathbf{j}}$, where $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ is the initial cluster, \mathbf{e}_{i} is the i th unit vector and $\mathbf{b}_{\mathbf{j}}$ is the j th column of B_{Q}.

Then for any cluster variable x^{\prime} written as a Laurent polynomial in $\mathbb{Q}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y_{1}, y_{2}, \ldots, y_{n}\right]$, the \mathbb{Z}^{n}-grading of each such Laurent monomial of x^{\prime} coincide. This common multidegree is defined to be the g-vector attached to x^{\prime}. (See Section 6 of Cluster Algebras IV.)
2) As a consequence of sign coherence, any F-polynomial has a constant term of 1 . Utilizing this, the g-vector of x^{\prime} agrees with the exponent vector, in x_{i} 's, of the unique Laurent monomial of x^{\prime} containing no y_{j} 's.

Three definitions of g-vectors

1) For a framed quiver \widetilde{Q} with exchange matrix $\left[\begin{array}{c}B_{Q} \\ I_{n}\end{array}\right]$, define a \mathbb{Z}^{n}-grading by $\operatorname{deg}\left(x_{i}\right)=\mathbf{e}_{i}$ and $\operatorname{deg}\left(y_{j}\right)=-\mathbf{b}_{\mathbf{j}}$, where $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\}$ is the initial cluster, \mathbf{e}_{i} is the i th unit vector and $\mathbf{b}_{\mathbf{j}}$ is the j th column of B_{Q}.

Then for any cluster variable x^{\prime} written as a Laurent polynomial in $\mathbb{Q}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}, y_{1}, y_{2}, \ldots, y_{n}\right]$, the \mathbb{Z}^{n}-grading of each such Laurent monomial of x^{\prime} coincide. This common multidegree is defined to be the g-vector attached to x^{\prime}. (See Section 6 of Cluster Algebras IV.)
2) As a consequence of sign coherence, any F-polynomial has a constant term of 1 . Utilizing this, the g-vector of x^{\prime} agrees with the exponent vector, in x_{i} 's, of the unique Laurent monomial of x^{\prime} containing no y_{j} 's.
3) Let C_{t} (resp. G_{t}) denote the matrices whose columns are the c-vectors (resp. g-vectors) associated to seed t. Theorem 4.1 of Nakanishi 2011:

$$
\text { As another consequence of sign coherence, } G_{t}=\left(C_{t}^{T}\right)^{-1}
$$

F-polynomials from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M '19+) :
Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{\ell}} t_{\ell}$.

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors and g-vectors, followed by a monomial specilization:

F-polynomials from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M '19+) :

Given a framed quiver Q and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i_{\ell}}} t_{\ell}$.

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{\ell} ; t_{\ell}}$, is expressible as a product of recursively defined formulas, dependent only on c-vectors and g-vectors, followed by a monomial specilization:
Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \ldots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Then $F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1} L_{j}^{\boldsymbol{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y\left|c_{1}\right|, \ldots, z_{\ell}=y}{ }^{c_{\ell} \mid}$. Also see [Nagao10] and [Keller12].
Note: Before the monomial specialization, the L_{j} 's and $F_{i, t_{\ell}}$'s may be rational functions in the z_{i} 's.

Here, $\mathbf{c}_{\mathbf{p}}$ (resp. $\left|\mathbf{c}_{\mathbf{p}}\right|$ or $\mathbf{g}_{\mathbf{p}}$) denotes the p th c-vector (resp. the normalized c -vector $\epsilon_{p} \mathbf{c}_{\mathbf{p}}$ or the g -vector) along the mutation sequence $\bar{\mu}, B_{Q}$ denotes the exchange matrix associated to Q before any mutations, $\mathbf{a} \cdot \mathbf{b}$ denotes ordinary dot product, and $\mathbf{y}^{\left(d_{1}, d_{2}, \ldots, d_{n}\right)}$ is shorthand for $y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots y_{n}^{d_{n}}$.

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$.

Type A_{2} Quiver Example

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{\mathbf{4}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{\mathbf{5}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
B_{Q}\left|\mathbf{c}_{2}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{\mathbf{4}}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{\mathbf{5}}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] . \\
L_{1}=1+z_{1}, \quad L_{2}=1+z_{2} L_{1}^{-1}=1+z_{2}\left(1+z_{1}\right)^{-1}=\frac{1+z_{1}+z_{2}}{1+z_{1}} \\
L_{3}=1+z_{3} L_{1}^{-1} L_{2}^{-1}=1+\frac{z_{3}}{1+z_{1}} \frac{1+z_{1}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

Let $L_{1}=1+z_{1}$ and $L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{\mathbf{k}-1} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|}$ for $k \geq 2$.
Supoose $B_{Q}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1}$. Then

$$
\begin{gathered}
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
B_{Q}\left|\mathbf{c}_{\mathbf{2}}\right|=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], B_{Q}\left|\mathbf{c}_{3}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right], B_{Q}\left|\mathbf{c}_{4}\right|=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] B_{Q}\left|\mathbf{c}_{5}\right|=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{gathered}
$$

$$
L_{4}=1+z_{4} L_{1}^{0} L_{2}^{1} L_{3}^{1}=1+z_{4} \frac{1+z_{1}+z_{2}}{1+z_{1}} \frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

$$
L_{5}=1+z_{5} L_{1}^{-1} L_{2}^{-1} L_{3}^{0} L_{4}^{1}=1+\frac{z_{5}}{1+z_{1}} \frac{1+z_{1}}{1+z_{1}+z_{2}} \frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}
$$

$$
=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{\mathbf{1}}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
L_{1}=1+z_{1}, \quad L_{2}=\frac{1+z_{1}+z_{2}}{1+z_{1}}, \quad L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}+z_{2}}, \quad L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{1+z_{1}}, \\
L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\mathbf{g}_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{g}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{g}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{g}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)}
\end{gathered}
$$

Type A_{2} Quiver Example (continued)

$$
\begin{gathered}
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i \ell ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|\mathbf{c}_{\ell}\right| \\
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Based on $\epsilon_{3}=-1, \epsilon_{4}=+1, \epsilon_{5}=+1$, and B_{Q} as above, we get

$$
F_{3} F_{1}=F_{2}+z_{3}, \quad F_{4} F_{2}=z_{4} F_{3}+1, \quad F_{5} F_{3}=z_{5} F_{4}+1,
$$

and these recurrences are valid for these expressions as rational functions.

Type A_{2} Quiver Example (continued)

$$
B_{Q}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \mu_{1} . \quad F_{i ; ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} \cdot \varepsilon_{\ell}}\right|_{z_{1}=y\left|c_{1}\right|, \ldots, z_{\ell}=y| |_{\ell} \mid}
$$

$$
\begin{gathered}
F_{1}=L_{1}=1+z_{1}, \quad F_{2}=L_{1} L_{2}=1+z_{1}+z_{2}, \\
F_{3}=L_{2} L_{3}=\frac{1+z_{1}+z_{2}+z_{3}}{1+z_{1}}, \\
F_{4}=L_{1}^{-1} L_{2}^{-1} L_{4}=\frac{1+z_{1}+z_{4}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}\right)}, \\
F_{5}=L_{2}^{-1} L_{3}^{-1} L_{5}=\frac{\left(1+z_{1}\right)\left(1+z_{1}+z_{2}\right)+z_{5}+z_{1} z_{5}+z_{4} z_{5}\left(1+z_{1}+z_{2}+z_{3}\right)}{\left(1+z_{1}+z_{2}\right)\left(1+z_{1}+z_{2}+z_{3}\right)} \\
\mathbf{c}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \mathbf{c}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{c}_{5}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

Letting $z_{1}=y_{1}, z_{2}=y_{1} y_{2}, z_{3}=y_{2}, z_{4}=y_{1}, z_{5}=y_{2}$, we get polynomials

$$
F_{1}=y_{1}+1, \quad F_{2}=y_{1} y_{2}+y_{1}+1, \quad F_{3}=y_{2}+1, \quad F_{4}=1, \quad F_{5}=1
$$

F-polynomials from C-Vectors and G-Vectors (2nd Version)

Theorem (Gupta '18) as will be re-expressed in (Gupta-M '19+) :
Given a framed quiver Q and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{1}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{\ell}} t_{\ell}$.

$$
\begin{aligned}
& \text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{c_{1} \cdot B_{Q}\left|c_{k}\right|} L_{2}^{c_{2} \cdot B_{Q}\left|c_{k}\right|} \cdots L_{k-1}^{c_{k-1} \cdot B_{Q}\left|c_{k}\right|} \text { for } k \geq 2 \\
& \text { and } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{c_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|c_{\ell}\right| .
\end{aligned}
$$

F-polynomials from C-Vectors and G-Vectors (2nd Version)

Theorem (Gupta '18) as will be re-expressed in (Gupta-M '19+) :

Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i_{\ell}}} t_{\ell}$.

$$
\begin{aligned}
& \text { Let } L_{1}=1+z_{1} \text { and } L_{k}=1+z_{k} L_{1}^{\mathbf{c}_{1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} L_{2}^{\mathbf{c}_{2} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|} \cdots L_{k-1}^{\mathbf{c}_{k-1} \cdot B_{Q}\left|\mathbf{c}_{k}\right|} \text { for } k \geq 2 \\
& \text { and } F_{i_{\ell} ; t_{\ell}}=\left.\prod_{j=1}^{\ell} L_{j}^{\mathbf{c}_{j} \cdot \mathbf{g}_{\ell}}\right|_{z_{1}=y}\left|\mathbf{c}_{1}\right|, \ldots, z_{\ell}=y\left|c_{\ell}\right| \cdot
\end{aligned}
$$

Then the F-polynomial resulting from the final mutation, i.e. $F_{i_{i} ; t_{\ell}}$, can also be expressed as a sum of a product of binomial coefficients:

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{j=1}^{\ell}\left(\begin{array}{c}
\mathbf{c}_{\mathbf{j}} \cdot\left(\mathbf{g}_{\ell}+\sum_{\substack{k=j+1 \\
m_{j}}}^{\ell} m_{k} B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|\right)
\end{array}\right) \mathbf{y} \sum_{j=1}^{\ell} m_{j}\left|\mathbf{c}_{\mathbf{j}}\right| .
$$

Note: This expression as a power series leaves the polynomiality (finiteness of the sum) and positivity of the coefficients as surprising consequences.

Kronecker Quiver Example

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{\ell}}$.

Kronecker Quiver Example

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{\ell}}$. Then
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}-2 \\ -1\end{array}\right], \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{l}-3 \\ -2\end{array}\right], \ldots, \mathbf{c}_{\mathbf{p}}=\left[\begin{array}{c}-p \\ -p+1\end{array}\right],\left|\mathbf{c}_{\mathbf{p}}\right|=\left[\begin{array}{c}p \\ p+1\end{array}\right]$,
and $\mathbf{g}_{1}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \mathbf{g}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right], \ldots, \mathbf{g}_{\mathbf{q}}=\left[\begin{array}{c}-q \\ q+1\end{array}\right]$.

Kronecker Quiver Example

$$
F_{i, t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in Z_{Z} z_{0} j=1} \prod_{m_{j}}^{\ell}\left(\mathrm{c}_{\mathrm{j}} \cdot\left(\mathrm{~g}_{\ell}+\sum_{k=j+1}^{\ell} m_{k} B_{Q}\left|\mathrm{c}_{\mathrm{k}}\right|\right)\right) \mathbf{y}_{\sum_{j=1}^{\ell} m_{j} \mathrm{c}_{\mathrm{j}} \mid} .
$$

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{\ell}}$. Then
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}-2 \\ -1\end{array}\right], \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{l}-3 \\ -2\end{array}\right], \ldots, \mathbf{c}_{\mathbf{p}}=\left[\begin{array}{c}-p \\ -p+1\end{array}\right],\left|\mathbf{c}_{\mathbf{p}}\right|=\left[\begin{array}{c}p \\ p+1\end{array}\right]$, and $\mathbf{g}_{1}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \mathbf{g}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right], \ldots, \mathbf{g}_{\mathbf{q}}=\left[\begin{array}{c}-q \\ q+1\end{array}\right]$. Hence
$\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-\ell \\ \ell+1\end{array}\right]=\ell-j+1, \mathbf{c}_{\mathbf{j}} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-2 k+2 \\ -2 k\end{array}\right]=2(j-k)$.

Kronecker Quiver Example

Suppose $B_{Q}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{\ell}}$. Then
$\mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}-1 \\ 0\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{l}-2 \\ -1\end{array}\right], \mathbf{c}_{\mathbf{3}}=\left[\begin{array}{l}-3 \\ -2\end{array}\right], \ldots, \mathbf{c}_{\mathbf{p}}=\left[\begin{array}{c}-p \\ -p+1\end{array}\right],\left|\mathbf{c}_{\mathbf{p}}\right|=\left[\begin{array}{c}p \\ p+1\end{array}\right]$, and $\mathbf{g}_{1}=\left[\begin{array}{c}-1 \\ 2\end{array}\right], \mathbf{g}_{2}=\left[\begin{array}{c}-2 \\ 3\end{array}\right], \mathbf{g}_{3}=\left[\begin{array}{c}-3 \\ 4\end{array}\right], \ldots, \mathbf{g}_{\mathbf{q}}=\left[\begin{array}{c}-q \\ q+1\end{array}\right]$. Hence
$\mathbf{c}_{\mathbf{j}} \cdot \mathbf{g}_{\ell}=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-\ell \\ \ell+1\end{array}\right]=\ell-j+1, \mathbf{c}_{\mathbf{j}} \cdot B_{Q}\left|\mathbf{c}_{\mathbf{k}}\right|=\left[\begin{array}{c}-j \\ -j+1\end{array}\right] \cdot\left[\begin{array}{c}-2 k+2 \\ -2 k\end{array}\right]=2(j-k)$.
Consequently, we simplify the formula in the Kronecker case to

$$
F_{i_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

Kronecker Quiver Example (continued)

$$
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} .
$$

$$
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=1+y_{1}
$$

$$
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}}=1+2 y_{1}+y_{1}^{2}+y_{1}^{2} y_{2} .
$$

$$
F_{1, t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z} \geq 0}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}=
$$

$$
1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{i_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=\underline{1}+\underline{y_{1}}
\end{gathered}
$$

These two terms correspond to $m_{1}=0$ and $m_{1}=1$, respectively. There are no contributions for $m_{1} \geq 2$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{F_{\ell} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} i m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=\underline{1}+\underline{y_{1}}
\end{gathered}
$$

These two terms correspond to $m_{1}=0$ and $m_{1}=1$, respectively. There are no contributions for $m_{1} \geq 2$.

$$
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}}=\underline{1+2 y_{1}+y_{1}^{2}}+\underline{y_{1}^{2} y_{2}}
$$

The two underlined contributions correspond to $m_{2}=0$ and $m_{2}=1$, respectively. Analogously, there are no contributions for $m_{2} \geq 2$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{F_{i} ; t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{\ell-i+1-2 \sum_{j=i+1}^{\ell}(j-i) m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} m_{i}} y_{2}^{\sum_{i=1}^{\ell}(i-1) m_{i}} . \\
F_{1 ; t_{1}}=\sum_{m_{1}=0}^{\infty}\binom{1}{m_{1}} y_{1}^{m_{1}}=\underline{1}+\underline{y_{1}}
\end{gathered}
$$

These two terms correspond to $m_{1}=0$ and $m_{1}=1$, respectively. There are no contributions for $m_{1} \geq 2$.

$$
F_{2 ; t_{2}}=\sum_{m_{1}=0}^{\infty} \sum_{m_{2}=0}^{\infty}\binom{2-2 m_{2}}{m_{1}}\binom{1}{m_{2}} y_{1}^{m_{1}+2 m_{2}} y_{2}^{m_{2}}=\underline{1+2 y_{1}+y_{1}^{2}}+\underline{y_{1}^{2} y_{2}}
$$

The two underlined contributions correspond to $m_{2}=0$ and $m_{2}=1$, respectively. Analogously, there are no contributions for $m_{2} \geq 2$.

The first three terms correspond to $m_{1}=0, m_{1}=1, m_{1}=2$, respectively, and there are no contributions for $m_{1} \geq 2$.

Kronecker Quiver Example (continued)

$$
F_{1, t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z} \geq 0}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}=
$$

$$
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$.

Kronecker Quiver Example (continued)

$$
F_{1, t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}=
$$

$$
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$. Further refinement of this sum by tracking $m_{2}=0$ and $m_{2}=1$, respectively, under the assumption $m_{3}=0$ yields

$$
\underline{\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}}}+\underline{2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}}
$$

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{1 ; t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}= \\
1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .
\end{gathered}
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$. Further refinement of this sum by tracking $m_{2}=0$ and $m_{2}=1$, respectively, under the assumption $m_{3}=0$ yields

$$
\underline{\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}}}+\underline{2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
$$

However, in addition we get an infinite number of contributions

$$
\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+4} y_{2}^{2}+\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+3} y_{2}^{2} ; \quad \text { recall }\binom{-1}{m_{1}}=(-1)^{m_{1}}
$$

arising when $m_{2}=2, m_{3}=0$ or $m_{2}=0, m_{3}=1$.

Kronecker Quiver Example (continued)

$$
\begin{gathered}
F_{1 ; t_{3}}=\sum_{m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{\geq 0}}\binom{3-2 m_{2}-4 m_{3}}{m_{1}}\binom{2-2 m_{3}}{m_{2}}\binom{1}{m_{3}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}} y_{2}^{m_{2}+2 m_{3}}= \\
\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}+2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}+y_{1}^{3} y_{2}^{2} .}
\end{gathered}
$$

The two underlined contributions correspond to $m_{3}=0$ and $m_{3}=1$, respectively. Again, there are no contributions for $m_{3} \geq 2$. Further refinement of this sum by tracking $m_{2}=0$ and $m_{2}=1$, respectively, under the assumption $m_{3}=0$ yields

$$
\underline{\underline{1+3 y_{1}+3 y_{1}^{2}+y_{1}^{3}}}+\underline{2 y_{1}^{2} y_{2}+2 y_{1}^{3} y_{2}}+\underline{y_{1}^{3} y_{2}^{2}} .
$$

However, in addition we get an infinite number of contributions

$$
\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+4} y_{2}^{2}+\sum_{m_{1}=0}^{\infty}\binom{-1}{m_{1}} y_{1}^{m_{1}+3} y_{2}^{2} ; \quad \text { recall } \quad\binom{-1}{m_{1}}=(-1)^{m_{1}}
$$

arising when $m_{2}=2, m_{3}=0$ or $m_{2}=0, m_{3}=1$. This telescoping infinite sum vanishes except for the term of $y_{1}^{3} y_{2}^{2}$ for $m_{1}=0, m_{2}=0, m_{3}=1$.

Kronecker Quiver Example (continued)

The formulae continue as

$$
\begin{gathered}
F_{2 ; t_{4}}=\sum_{m_{1}, m_{2}, m_{3}, m_{4} \in \mathbb{Z}_{\geq 0}}\binom{4-2 m_{2}-4 m_{3}-6 m_{4}}{m_{1}}\binom{3-2 m_{3}-4 m_{4}}{m_{2}} \\
\times\binom{ 2-2 m_{4}}{m_{3}}\binom{1}{m_{4}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}+4 m_{4}} y_{2}^{m_{2}+2 m_{3}+3 m_{4}} \\
F_{1 ; t_{5}}=\sum_{m_{1}, m_{2}, m_{3}, m_{4}, m_{5} \in \mathbb{Z}_{\geq 0}}\binom{5-2 m_{2}-4 m_{3}-6 m_{4}-8 m_{5}}{m_{1}}\binom{4-2 m_{3}-4 m_{4}-6 m_{5}}{m_{2}} \times \\
\binom{3-2 m_{4}-4 m_{5}}{m_{3}}\binom{2-2 m_{5}}{m_{4}}\binom{1}{m_{5}} y_{1}^{m_{1}+2 m_{2}+3 m_{3}+4 m_{4}+5 m_{5}} y_{2}^{m_{2}+2 m_{3}+3 m_{4}+4 m_{5}}
\end{gathered}
$$

$F_{1 ; t_{5}}$ includes terms such as $6 y_{1}^{5} y_{2}^{3}-2 y_{1}^{5} y_{2}^{3}=4 y_{1}^{5} y_{2}^{3}$ in its expansion, corresponding to ($\left.m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right)=(0,1,1,0,0)$ and ($1,0,0,1,0$), respectively. In particular, the contributions from negative binomial coefficients yield a positive term, yet arises from ann-trivial difference.

Formula for general Rank Two, i.e. r-Kronecker Case

For the case of $B_{Q}=\left[\begin{array}{cc}0 & r \\ -r & 0\end{array}\right]$ and $\bar{\mu}=\mu_{1} \mu_{2} \mu_{1} \mu_{2} \cdots \mu_{i_{e}}$,
$F_{i, t t_{\ell}}=\sum_{\left(m_{1}, \ldots, m_{\ell}\right) \in \mathbb{Z}_{\geq 0}} \prod_{i=1}^{\ell}\binom{s_{\ell-i}-r \sum_{j=i+1}^{\ell} s_{j-i-1} m_{j}}{m_{i}} y_{1}^{\sum_{i=1}^{\ell} s_{i-1} m_{i}} y_{2} \sum_{i=1}^{\ell} s_{i-2} m_{i}$
where $s_{-1}=0, s_{0}=1, s_{k+1}=r s_{k}-s_{k-1}$ for $k \geq 0$.

Cluster Monomials (F-polys) from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M '19+) : Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i_{\ell}}} t_{\ell}$.

Let $\left\{F_{1 ; t_{\ell}}, F_{2 ; t_{\ell}}, \ldots, F_{n ; t_{\ell}}\right\}$ be the F-polynomials associated to the cluster seed after the final mutation. Let $F_{t_{\ell}}^{\left(d_{1}, \ldots, d_{n}\right)}=F_{1 ; t_{\ell}}^{d_{1}} F_{2 ; t_{\ell}}^{d_{2}} \cdots F_{n ; t_{\ell}}^{d_{n}}$ and $\mathbf{g}^{\left(\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{\mathbf{n}}\right)}$ be the associated \mathbf{d}-weighted linear combination of g-vectors.

Cluster Monomials (F-polys) from C-Vectors and G-Vectors

Theorem (Gupta '18) as will be re-expressed in (Gupta-M '19+) :

Given a framed quiver \widetilde{Q} and a mutation sequence $\bar{\mu}=\mu_{i_{1}} \mu_{i_{2}} \cdots \mu_{i_{\ell}}$, consider the sequence of cluster seeds $t_{0} \rightarrow^{\mu_{i_{1}}} t_{1} \rightarrow^{\mu_{i_{2}}} \ldots t_{\ell-1} \rightarrow^{\mu_{i_{\ell}}} t_{\ell}$.

Let $\left\{F_{1 ; t_{\ell}}, F_{2 ; t_{\ell}}, \ldots, F_{n ; t_{\ell}}\right\}$ be the F-polynomials associated to the cluster seed after the final mutation. Let $F_{t_{\ell}}^{\left(d_{1}, \ldots, d_{n}\right)}=F_{1 ; t_{\ell}}^{d_{1}} F_{2 ; t_{\ell}}^{d_{2}} \cdots F_{n ; t_{\ell}}^{d_{n}}$ and $\mathbf{g}^{\left(\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{n}\right)}$ be the associated \mathbf{d}-weighted linear combination of g-vectors. Then this F-polynomial analogue of a cluster monomial can be expressed as a sum of products of binomial coefficients:

Here, $\mathbf{c}_{\mathbf{p}}$ (resp. $\left|\mathbf{c}_{\mathbf{p}}\right|$) denotes the p th c-vector (resp. the normalized c-vector $\epsilon_{p} \mathbf{c}_{\mathbf{p}}$) along the mutation sequence $\bar{\mu}, B_{Q}$ denotes the exchange matrix associated to Q before any mutations, $\mathbf{a} \cdot \mathbf{b}$ denotes ordinary dot product, and $\mathbf{y}^{\left(d_{1}, d_{2}, \ldots, d_{n}\right)}$ is shorthand for $y_{1}^{d_{1}} y_{2}^{d_{2}} \cdots \cdot y_{n}^{d_{n}}$

Thanks for Coming (http://math.umn.edu/~musiker/Fpoly19.pdf)

- Meghal Gupta, A formula for F-polynomials in terms of C-Vectors and Stabilization of F-polynomials, REU 2018, arXiv:1812.01910
- Meghal Gupta and Gregg Musiker, Applications of F-polynomials in terms of C-Vectors, (in preparation).
- H. Derksen, J. Weyman and A. Zelevinsky. Quivers with potentials and their representations II: applications to cluster algebras, JAMS. 2010.
- S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients, Compositio Mathematica. 2007.
- B. Keller. Cluster algebras and derived categories, arXiv:1202.4161.
- K. Nagao. Donaldson-Thomas theory and cluster algebras, Duke Mathematical Journal. 2013.
- T. Nakanishi. Periodicities in cluster algebras and dilogarithm identities, Representations of algebras and related topics. 2011.
- T. Tran. F-polynomials in quantum cluster algebras, Algebras and representation theory. 2011.

