Higher Cluster Categories and QFT Dualities

Gregg Musiker (University of Minnesota)

Combinatorics Seminar
October 4, 2019

Published in Phys. Rev. D. arXiv:1711. 01270

Based on Joint Work with Seba Franco

Motivation and History

There has been a fruitful dialogue between string theorists and mathematicians since the 1990's:

Seiberg duality (1995)
(Seiberg)
:---:
(Fomin-Zelevinsky)

Zamolodchikov Periodicity (1991)
(Zamolodchikov)
:---
(Fomin-Zelevinsky)

Superpotentials \& Moduli Spaces (2002) \longleftrightarrow Quivers with Potentials (2007) (Berenstein-Douglas)

This Talk:

Brane Bricks \& Hyperbricks (2015-2016) \longleftrightarrow ??????
(Franco-Lee-Seong-Vafa)

Introduction to Cluster Algebras

In the late 1990's: Fomin and Zelevinsky were studying total positivity and canonical bases of algebraic groups. They noticed recurring combinatorial and algebraic structures.

Let them to define cluster algebras, which have now been linked to quiver representations, Poisson geometry Teichmüller theory, tilting theory, mathematical physics, discrete integrable systems, string theory, and many other topics.

Cluster algebras are a certain class of commutative rings which have a distinguished set of generators that are grouped into overlapping subsets, called clusters, each having the same cardinality.

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.
Generators:
Specify an initial finite set of them, a Cluster, $\left\{x_{1}, x_{2}, \ldots, x_{n+m}\right\}$.

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.
Generators:
Specify an initial finite set of them, a Cluster, $\left\{x_{1}, x_{2}, \ldots, x_{n+m}\right\}$.
Construct the rest via Binomial Exchange Relations:

$$
x_{\alpha} x_{\alpha}^{\prime}=\prod x_{\gamma_{i}}^{d_{i}^{+}}+\prod x_{\gamma_{i}}^{d_{i}^{-}} .
$$

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} (of geometric type) is a subalgebra of $k\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right)$ constructed cluster by cluster by certain exchange relations.

Generators:
Specify an initial finite set of them, a Cluster, $\left\{x_{1}, x_{2}, \ldots, x_{n+m}\right\}$.
Construct the rest via Binomial Exchange Relations:

$$
x_{\alpha} x_{\alpha}^{\prime}=\prod x_{\gamma_{i}}^{d_{i}^{+}}+\prod x_{\gamma_{i}}^{d_{i}^{-}} .
$$

The set of all such generators are known as Cluster Variables, and the initial pattern of exchange relations (described as a valued quiver, i.e. a directed graph) determines the Seed.

Relations:
Induced by the Binomial Exchange Relations.

Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver Q, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.

Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver Q, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.

Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver Q, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.
Step 2: For every 2-path $k \leftarrow j \leftarrow i$ in Q, add a new arrow

Step 3: Delete any 2-cycles created by Steps 1 and 2.
Example:

$$
3 \leftarrow 2 \leftarrow 1 \xrightarrow{\mu_{2}} 3 \longleftrightarrow 2 \longrightarrow 1
$$

Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver Q, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.
Step 2: For every 2-path $k \leftarrow j \leftarrow i$ in Q, add a new arrow

Step 3: Delete any 2-cycles created by Steps 1 and 2.
Example:

Quiver Mutation (Fomin-Zelevinsky 2001)

Given a quiver Q, we mutate at vertex j by:
Step 1: Reverse all arrows incident to vertex j.
Step 2: For every 2-path $k \leftarrow j \leftarrow i$ in Q, add a new arrow $k>j$.

Step 3: Delete any 2-cycles created by Steps 1 and 2.
Example:

$$
\begin{aligned}
3 \leftarrow 2 \leftarrow 1 \xrightarrow{\mu_{2}} 3 \longleftrightarrow 2 \longrightarrow 1 & \xrightarrow{\mu_{2}} \\
& =3 \longleftarrow 2 \\
& =3
\end{aligned}
$$

Cluster Variable Mutation (Fomin-Zelevinsky 2001)

In addition to the mutation of quivers, there is also a complementary cluster mutation that can be defined.
Cluster mutation yields a sequence of Laurent polynomials in $\mathbb{Q}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ known as cluster variables.
Given a quiver Q and an initial cluster $\left\{x_{1}, \ldots, x_{n}\right\}$, then mutating at vertex j yields a new cluster variable x_{j}^{\prime}
defined by

$$
x_{j}^{\prime}=\left(\prod_{k \leftarrow j \in Q} x_{k}+\prod_{j \leftarrow i \in Q} x_{i}\right) / x_{j}
$$

Example: $Q=3 \rightarrow 2 \leftarrow 1$

$$
\begin{gathered}
x_{1} x_{1}^{\prime}=x_{2}+1 \\
x_{2} x_{2}^{\prime}=1+x_{1} x_{3} \\
x_{3} x_{3}^{\prime}=x_{2}+1
\end{gathered}
$$

Cluster Algebras from Surfaces

Theorem (Fomin-Shapiro-Thurston 2006, based on earlier work of Fock-Goncharov and Gekhtman-Shapiro-Vainshtein): Given a Riemann surface with marked points (S, M), they define a cluster algebra $\mathcal{A}(S, M)$.

$$
\text { Seed } \leftrightarrow \text { Triangulation } T=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}
$$

Cluster Variable $\leftrightarrow \operatorname{Arc} \gamma\left(x_{i} \leftrightarrow \tau_{i} \in T\right)$

Cluster Mutation (Binomial Exchange Relations) \leftrightarrow Flipping Diagonals.

$x_{\gamma}=\frac{x_{2}^{2}+2 x_{2}+1+x_{1} x_{3}}{x_{1} x_{2} x_{3}}$, via $x_{1} x_{1}^{\prime}=x_{2}+1, x_{2} x_{2}^{\prime \prime}=x_{3}+x_{1}^{\prime}, x_{3} x_{3}^{\prime \prime \prime}=x_{2}^{\prime \prime}+x_{1}^{\prime}$

Cluster Algebras from Surfaces

Theorem. (M-Schiffler-Williams 2009) Given a cluster algebra arising from a surface, $\mathcal{A}(S, M)$ with initial seed Σ, the Laurent expansion of every cluster variable with respect to the seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of graphs.

Cluster Algebras from Surfaces

Theorem. (M-Schiffler-Williams 2009) Given a cluster algebra arising from a surface, $\mathcal{A}(S, M)$ with initial seed Σ, the Laurent expansion of every cluster variable with respect to the seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of graphs. Example:

$$
\left(x_{9}\right) x_{1} x_{3}\left(x_{6}\right),
$$

$\left(x_{9} x_{7} x_{4} x_{6}\right)$,
$x_{2}\left(x_{8}\right)\left(x_{4} x_{6}\right)$,

$\left(x_{9} x_{7}\right) x_{2}\left(x_{5}\right)$,

$$
x_{2}\left(x_{8}\right) x_{2}\left(x_{5}\right) \cdot x_{\gamma}=\frac{x_{1} x_{3}+1+2 x_{2}+x_{2}^{2}}{x_{1} x_{2} x_{3}}\left(\text { with } x_{4}=\cdots=x_{9}=1\right)
$$

A perfect matching is a subset of edges covering every vertex exactly once. The weight of a matching is the product of the weights of the constituent edges. The denominator corresponds to the labels of $G_{\Sigma, \gamma}$'s tiles.

Cluster Algebras and Aztec Diamonds

Consider the quiver Q (on the left below). Instead of all cluster variables, we focus on those obtained by mutating $1,2,3,4,1,2, \ldots$ periodically:

Cluster Algebras and Aztec Diamonds

Consider the quiver Q (on the left below). Instead of all cluster variables, we focus on those obtained by mutating $1,2,3,4,1,2, \ldots$ periodically:

Yields a sequence of cluster variables, with initial cluster variables $x_{1}, x_{2}, x_{3}, x_{4}$, with x_{n+4} denoting the nth new cluster variable obtained by this mutation sequence $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}, \ldots\right\}$.

Because of the periodicity, it follows that the x_{n} 's satisfy the recurrences

$$
x_{n} x_{n-4}= \begin{cases}x_{n-1}^{2}+x_{n-2}^{2} & \text { when } n \text { is odd, and } \\ x_{n-2}^{2}+x_{n-3}^{2} & \text { when } n \text { is even }\end{cases}
$$

For example, $x_{5}=\frac{x_{3}^{2}+x_{4}^{2}}{x_{1}}, x_{6}=\frac{x_{3}^{2}+x_{4}^{2}}{x_{2}}, x_{7}=\frac{x_{5}^{2}+x_{6}^{2}}{x_{3}}$, and $x_{8}=\frac{x_{5}^{2}+x_{6}^{2}}{x_{4}}$;

Cluster Algebras and Aztec Diamonds

Let $Q=\int_{4}^{2}$, and mutate periodically at $1,2,3,4,1,2,3,4, \ldots$.

$$
x_{n} x_{n-4}= \begin{cases}x_{n-1}^{2}+x_{n-2}^{2} & \text { when } n \text { is odd, and } \\ x_{n-2}^{2}+x_{n-3}^{2} & \text { when } n \text { is even } .\end{cases}
$$

By letting $x_{1}=x_{2}$ and $x_{3}=x_{4}$, we get $x_{2 n+1}=x_{2 n}$ for all n.
Letting $\left\{T_{n}\right\}$ be the sequence $\left\{x_{2 n}\right\}_{n \in \mathbb{Z}}$, we obtain a single recurrence.

$$
T_{n} T_{n-2}=2 T_{n-1}^{2} .
$$

If $T_{1}=T_{2}=1,\left\{T_{n}\right\}=\{1,1,2,8,64,1024,32768, \ldots\}=\left\{2^{\frac{(n-1)(n-2)}{2}}\right\}$.
For $n \geq 3, T_{n}=\#$ (perfect matchings of the $(n-2)$ nd Aztec Diamond).

Cluster Algebras and Aztec Diamonds

2	4	2	4	2	4	2
3	1	3	-1_{7}	3	1	3
2	4	2	-4	2	4	2
3	1	-3	1	3	1	3
2	4	2	4	2	4	2
3	1	3	1	3	1	3
2	4	2	4	2	4	2

$x_{5}=\frac{x_{3}^{2}+x_{4}^{2}}{x_{1}}, x_{6}=\frac{x_{3}^{2}+x_{4}^{2}}{x_{2}}, x_{7}=\frac{\left(x_{3}^{2}+x_{4}^{2}\right)^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{x_{1}^{2} x_{2}^{2} x_{3}}$, and $x_{8}=\frac{\left(x_{3}^{2}+x_{4}^{2}\right)^{2}\left(x_{1}^{2}+x_{2}^{2}\right)}{x_{1}^{2} x_{2}^{2} x_{4}}$

What is a Brane Tiling (in Physics \& Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to
Decribe the world volume of both D_{3} and M_{2} branes, and describe certain $(3+1)$-dimensional superconformal field theories arising in string theory (Type II B).

What is a Brane Tiling (in Physics \& Algebraic Geometry)

In physics, Brane Tilings are combinatorial models that are used to
Decribe the world volume of both D_{3} and M_{2} branes, and describe certain $(3+1)$-dimensional superconformal field theories arising in string theory (Type II B).

In Algebraic Geometry, they are used to
Probe certain toric Calabi-Yau singularities, and relate to non-commutative crepant resolutions and the 3-dimensional McKay correspondence.

Certain examples of path algebras with relations (Jacobian Algebras) can be constructed by a quiver and potential coming from a brane tiling.

What is a Brane Tiling (Combinatorially)

However, this is a mathematics talk, not a physics talk, so I will henceforth focus on combinatorial motivation instead.

Most simply stated, a Brane Tiling is a Bipartite graph on a torus.
We view such a tiling as a doubly-periodic tiling of its universal cover, the Euclidean plane.

Examples:

Brane Tilings from a Quiver Q with Potential W

A Brane Tiling can be associated to a pair (Q, W), where Q is a quiver and W is a potential (called a superpotential in the physics literature).

A quiver Q is a directed graph where each edge is referred to as an arrow, and multiple edges are allowed.

A potential W is a linear combination of cyclic paths in Q (possibly an infinite linear combination).

For combinatorial purposes, we assume other conditions on (Q, W), such as

- Each arrow of Q appears in one term of W with a positive sign, and one term with a negative sign.
- The number of terms of W with a positive sign equals the number with a negative sign. All coefficients in W are ± 1.

Example of a Brane Tiling and its Potential

$$
\begin{aligned}
W & =X_{13}^{(W)} X_{32}^{(S)} X_{24}^{(E)} X_{41}^{(N)}-X_{13}^{(W)} X_{32}^{(N)} X_{24}^{(E)} X_{41}^{(S)} \\
& +X_{13}^{(E)} X_{32}^{(N)} X_{24}^{(W)} X_{41}^{(S)}-X_{13}^{(E)} X_{32}^{(S)} X_{24}^{(W)} X_{41}^{(N)}
\end{aligned}
$$

Brane Tilings in Physics

Face \longleftrightarrow Gauge Group $U(N)$

Edge \longleftrightarrow Bifundamental Chiral Fields (Representations)
Vertex \longleftrightarrow Gauge-invariant operator (Term in the Superpotential)

Brane Tilings in Physics

Face \longleftrightarrow Gauge Group $U(N)$
Edge \longleftrightarrow Bifundamental Chiral Fields (Representations)
Vertex \longleftrightarrow Gauge-invariant operator (Term in the Superpotential)
Together, this data yields a quiver gauge theory. One can apply Seiberg duality to get a different quiver gauge theory.

Combinatorial connection:
Seiberg duality corresponds to mutation in cluster algebra theory.

To Physics: Seiberg Duality and Quivers w/ Potential

Recall: Quiver Mutation (Fomin-Zelevinsky 2001) at vertex j of Q :
Step 1: Reverse all arrows incident to vertex j.
Step 2: For every 2-path $k \leftarrow j \leftarrow i$ in Q, add a new arrow

Step 3: Delete any 2-cycles created by Steps 1 and 2.
Example:

$$
\begin{aligned}
& 3 \leftarrow 2 \leftarrow 1 \xrightarrow{\mu_{2}} 3 \longleftrightarrow 2 \longrightarrow 1 \\
& 3<2< \\
& 3< \\
& 3<
\end{aligned}
$$

Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver Q, a potential W is a linear combination of cycles of the quiver Q.

Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver Q, a potential W is a linear combination of cycles of the quiver Q. With the new data of a potential, we mutate the quiver and potential (Q, W) together (at vertex j):

Step 1: For every arrow $X_{j k}=j \rightarrow k$ (resp. $X_{i j}=i \rightarrow j$) incident to vertex j, replace it with its dual $X_{k j}^{*}=k \rightarrow j$ (resp. $\left.X_{j i}^{*}=j \rightarrow i\right)$.

Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver Q, a potential W is a linear combination of cycles of the quiver Q. With the new data of a potential, we mutate the quiver and potential (Q, W) together (at vertex j):

Step 1: For every arrow $X_{j k}=j \rightarrow k$ (resp. $X_{i j}=i \rightarrow j$) incident to vertex j, replace it with its dual $X_{k j}^{*}=k \rightarrow j$ (resp. $\left.X_{j i}^{*}=j \rightarrow i\right)$.

Step 2a: For every 2-path, $i \rightarrow j \rightarrow k$ in Q, add a new arrow $i \rightarrow k$ to Q and a new degree 3 term to W, namely $X_{i k} X_{k j}^{*} X_{j i}^{*}$.

Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Given a quiver Q, a potential W is a linear combination of cycles of the quiver Q. With the new data of a potential, we mutate the quiver and potential (Q, W) together (at vertex j):

Step 1: For every arrow $X_{j k}=j \rightarrow k$ (resp. $X_{i j}=i \rightarrow j$) incident to vertex j, replace it with its dual $X_{k j}^{*}=k \rightarrow j$ (resp. $\left.X_{j i}^{*}=j \rightarrow i\right)$.

Step 2a: For every 2-path, $i \rightarrow j \rightarrow k$ in Q, add a new arrow $i \rightarrow k$ to Q and a new degree 3 term to W, namely $X_{i k} X_{k j}^{*} X_{j i}^{*}$.

Step 2b: Replace any instances of $X_{i j} X_{j k}$ in W with the new arrow $X_{i k}$.
Step 3: Letting $\left(Q^{\prime}, W^{\prime}\right)$ be the result after Steps 1 and 2, apply a right-equivalence to equate

$$
\left(Q^{\prime}, W^{\prime}\right) \sim\left(Q_{\text {red }}^{\prime}, W_{\text {red }}^{\prime}\right) \oplus\left(Q_{\text {triv }}^{\prime}, W_{\text {triv }}^{\prime}\right)
$$

where $Q_{\text {red }}^{\prime}$ has no 2-cycles and $W_{r e d}^{\prime}$ has no terms of degree 2.

Mutation of Potentials (Derksen-Weyman-Zelevinsky 2007)

Step 1: For every arrow $X_{j k}$ (resp. $X_{i j}$) incident to vertex j, replace it with its dual $X_{k j}^{*}\left(\right.$ resp. $\left.X_{j i}^{*}\right)$.

Step 2a, 2b: For every 2-path, $i \rightarrow j \rightarrow k$ in Q, add $i \rightarrow k$ to Q and $X_{i k} X_{k j}^{*} X_{j i}^{*}$ to W. Replace instances of $X_{i j} X_{j k}$ in W with the new arrow $X_{i k}$.

Step 3: Letting $\left(Q^{\prime}, W^{\prime}\right)$ be the result after Steps 1 and 2, apply a right-equivalence to equate $\left(Q^{\prime}, W^{\prime}\right) \sim\left(Q_{r e d}^{\prime}, W_{r e d}^{\prime}\right) \oplus\left(Q_{\text {triv }}^{\prime}, W_{\text {triv }}^{\prime}\right)$ where $Q_{\text {red }}^{\prime}$ has no 2-cycles and $W_{r e d}^{\prime}$ has no terms of degree 2.

Example:

$$
\begin{aligned}
& 3 \leftarrow 2 \leftarrow 1 \xrightarrow{\mu_{2}} 3 \longleftrightarrow 2 \longrightarrow 1 \\
& =3 \longleftarrow 2 \longleftarrow 1 . \\
& W=0 \quad W^{\prime}=X_{13} X_{32}^{*} X_{21}^{*} \\
& W^{\prime \prime}=X_{13}\left(X_{31}\right)+X_{31} X_{12} X_{23} \\
& W_{\text {red }}^{\prime \prime}=0, \quad W_{\text {triv }}^{\prime \prime}=X_{13} X_{31} .
\end{aligned}
$$

Description of Seiberg Duality (from physics)

> From "Brane Dimers and Quiver Gauges Theories (2005) by Franco, Hanany, Kennaway, Vegh, and Wecht:

After picking a node to dualize at: "Reverse the direction of all arrows entering or exiting the dualized node. This is because Seiberg duality requires that the dual quarks transform in the conjugate flavor representations to the originals. ...

Next, draw in ... bifundamentals which correspond to composite (mesonic) operators. ... the Seiberg mesons are promoted to the fields in the bifundamental representation of the gauge group. ...

It is possible that this will make some fields massive, in which case the appropriate fields should then be integrated out."

Description of Seiberg Duality (rephrased combinatorially)

Pick a vertex j of the quiver Q (equiv. face of the brane tiling \mathcal{T}_{Q}) at which to mutate. Then, reverse the direction of all arrows incident to j, i.e. $A_{i j} \rightarrow A_{j i}^{*}$. Next, for every two-path $i \rightarrow j \rightarrow k$, "meson", in Q draw in a new arrow $i \rightarrow k$, "the Seiberg mesons are promoted to the fields". Let Q^{\prime} denote this new quiver.

We similarly alter the superpotential W to get W^{\prime}. For every 2-path $i \rightarrow j \rightarrow k$ in Q, we replace any appearance of the product $A_{i j} A_{j k}$ in W with the singleton $A_{i k}$ and add or subtract a new degree 3-term $A_{i k} A_{k j}^{*} A_{j i}^{*}$.

It is possible, that this will make some of the terms of W^{\prime} of degree two, "massive", in which case there should be an associated 2-cycle in the mutated quiver Q^{\prime} that can be deleted, "the appropriate fields should then be integrated out".

This is in fact Mutation of Quivers with potential from cluster algebras (as defined by Derksen-Weyman-Zelevinsky).

Description of Seiberg Duality (on the Brane Tiling)

In the special case, that we are mutating at a vertex with two arrows in and out, a toric vertex, this corresponds to a Urban Renewal of a square face in the brane tiling.

Example $\left(Q_{7}^{(2,3)}\right)$:

with potential

$$
\begin{aligned}
W & =A_{13} A_{34} A_{41}+A_{16} A_{63} A_{35}^{(V)} A_{51}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{16} A_{62} A_{24} A_{41}-A_{34} A_{46} A_{63}-A_{13} A_{35}^{(H)} A_{51}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74}
\end{aligned}
$$

We consider the corresponding Brane Tiling and mutation of (Q, W) at the toric vertex labeled 1 .

Description of Seiberg Duality (on the Brane Tiling)

Example ($Q_{7}^{(2,3)}$):

with potential

$$
\begin{aligned}
W & =A_{13} A_{34} A_{41}+A_{16} A_{63} A_{35}^{(V)} A_{51}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{16} A_{62} A_{24} A_{41}-A_{34} A_{46} A_{63}-A_{13} A_{35}^{(H)} A_{51}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74}
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example $\left(Q_{7}^{(2,3)}\right)$:

Rotate potential terms containing 1

$$
\begin{aligned}
W & =A_{41} A_{13} A_{34}+A_{51} A_{16} A_{63} A_{35}^{(V)}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{41} A_{16} A_{62} A_{24}-A_{34} A_{46} A_{63}-A_{51} A_{13} A_{35}^{(H)}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74}
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example $\left(Q_{7}^{(2,3)}\right)$:

Mutating at 1 yields

$$
\begin{aligned}
W^{\prime} & =A_{43} A_{34}+A_{56} A_{63} A_{35}^{(V)}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{46}^{(D)} A_{62} A_{24}-A_{34} A_{46} A_{63}-A_{53}^{(H)} A_{35}^{(H)}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74} \\
& +A_{14}^{*} A_{46}^{(D)} A_{61}^{*}+A_{15}^{*} A_{53}^{(H)} A_{31}^{*}-A_{14}^{*} A_{43} A_{31}^{*}-A_{15}^{*} A_{56} A_{61}^{*} .
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example $\left(Q_{7}^{(2,3)}\right)$:

$$
\begin{aligned}
W^{\prime} & =A_{43} A_{34}+A_{56} A_{63} A_{35}^{(V)}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{46}^{(D)} A_{62} A_{24}-A_{34} A_{46} A_{63}-A_{53}^{(H)} A_{35}^{(H)}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74} \\
& +A_{14}^{*} A_{46}^{(D)} A_{61}^{*}+A_{15}^{*} A_{53}^{(H)} A_{31}^{*}-A_{14}^{*} A_{43} A_{31}^{*}-A_{15}^{*} A_{56} A_{61}^{*} .
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example ($Q_{7}^{(2,3)}$):

Highlighting complementary terms

$$
\begin{aligned}
W^{\prime} & =A_{43} A_{34}+A_{56} A_{63} A_{35}^{(V)}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{46}^{(D)} A_{62} A_{24}-A_{34} A_{46} A_{63}-A_{53}^{(H)} A_{35}^{(H)}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74} \\
& +A_{14}^{*} A_{46}^{(D)} A_{61}^{*}+A_{53}^{(H)} A_{31}^{*} A_{15}^{*}-A_{43} A_{31}^{*} A_{14}^{*}-A_{15}^{*} A_{56} A_{61}^{*} .
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example $\left(Q_{7}^{(2,3)}\right)$:

Reduces the potential to

$$
\begin{aligned}
W^{\prime \prime} & =A_{56} A_{63} A_{35}^{(V)}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62}-A_{46}^{(D)} A_{62} A_{24}-A_{27} A_{73} A_{35}^{(V)} A_{52} \\
& -A_{45} A_{57} A_{74}+A_{14}^{*} A_{46}^{(D)} A_{61}^{*}-A_{15}^{*} A_{56} A_{61}^{*}-A_{46} A_{63} A_{31}^{*} A_{14}^{*}+A_{31}^{*} A_{15}^{*} A_{57} A_{73} .
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example ($Q_{7}^{(2,3)}$):

If we cyclically permute vertices

$$
\begin{aligned}
W^{\prime \prime} & =A_{45} A_{52} A_{24}^{(V)}+A_{13} A_{34} A_{41}+A_{16} A_{63} A_{35} A_{51}-A_{35}^{(D)} A_{51} A_{13}-A_{16} A_{62} A_{24}^{(V)} A_{41} \\
& -A_{34} A_{46} A_{63}+A_{73}^{*} A_{35}^{(D)} A_{57}^{*}-A_{74}^{*} A_{45} A_{57}^{*}-A_{35} A_{52} A_{27}^{*} A_{73}^{*}+A_{27}^{*} A_{74}^{*} A_{46} A_{62} .
\end{aligned}
$$

Description of Seiberg Duality (on the Brane Tiling)

Example $\left(Q_{7}^{(2,3)}\right)$:

The cyclic permutation yields the original Brane Tiling and (Q, W) !

$$
\begin{aligned}
W^{\prime \prime} & =A_{45} A_{52} A_{24}^{(V)}+A_{13} A_{34} A_{41}+A_{16} A_{63} A_{35} A_{51}-A_{35}^{(D)} A_{51} A_{13}-A_{16} A_{62} A_{24}^{(V)} A_{41} \\
& -A_{34} A_{46} A_{63}+A_{73}^{*} A_{35}^{(D)} A_{57}^{*}-A_{74}^{*} A_{45} A_{57}^{*}-A_{35} A_{52} A_{27}^{*} A_{73}^{*}+A_{27}^{*} A_{74}^{*} A_{46} A_{62} \\
W & =A_{13} A_{34} A_{41}+A_{16} A_{63} A_{35}^{(V)} A_{51}+A_{35}^{(H)} A_{57} A_{73}+A_{24} A_{45} A_{52}+A_{27} A_{74} A_{46} A_{62} \\
& -A_{16} A_{62} A_{24} A_{41}-A_{34} A_{46} A_{63}-A_{13} A_{35}^{(H)} A_{51}-A_{27} A_{73} A_{35}^{(V)} A_{52}-A_{45} A_{57} A_{74} .
\end{aligned}
$$

Such Cluster Mutations yield the Gale-Robinson Sequences

Example $\left(Q_{N}^{(r, s)}\right):($ e.g. $r=2, s=3, N=7)$

Mutating at $1,2,3, \ldots, N, 1,2, \ldots$ yields the same quiver, up to cyclic permutation, at each step, hence we obtain the infinite sequence of x_{N+1}, x_{N+2}, \ldots satsifying

$$
x_{n}=\left(x_{n-r} x_{n-N+r}+x_{n-s} x_{n-N+s}\right) / x_{n-N} \text { for } n>N .
$$

Known as the Gale-Robinson Sequence of Laurent polynomials.

FPSAC Proceedings 2013 (Jeong-M-Zhang)

FPSAC Proceedings 2013 (Jeong-M-Zhang)

Obtain pinecone graphs from Bousquet-Mélou, Propp, and West in terms of Brane Tilings Terminology.

Furthermore, to get cluster variable formulas with coefficients, need only use weights (Goncharov-Kenyon, Speyer) and heights (Kenyon-Propp-...)

$$
x_{8} \leftrightarrow \square, x_{9} \leftrightarrow \square, x_{10} \leftrightarrow \quad \begin{array}{|l|l}
4 & y^{3}
\end{array}, x_{11} \leftrightarrow \begin{array}{|c|c|}
\hline 2 & 4 \\
\hline
\end{array},
$$

FPSAC Proceedings 2013 (Jeong-M-Zhang)

Similar connections (without principal coefficients) also observed in "Brane tilings and non-commutative geometry" by Richard Eager.

Eager uses physics terminology where he looks at $Y^{p, q}$ and $L^{a, b, c}$ quiver gauge theories, and their periodic Seiberg duality (i.e. quiver mutations).

Recent Extensions of Seiberg Duality by Physicists

Brane Tilings like the above example correspond to a 4-dimensional $N=1$ super-symmetric quiver gauge theory.

We next consider a 2-dimensional $N=(0,2)$ SUSY quiver gauge theory.

Recent Extensions of Seiberg Duality by Physicists

Brane Tilings like the above example correspond to a 4-dimensional $N=1$ super-symmetric quiver gauge theory.

We next consider a 2-dimensional $N=(0,2)$ SUSY quiver gauge theory.
Gadde, Gukov, and Putrov (2013) introduced dynamics which are analogues of Seiberg Duality: GGP $(0,2)$ Triality.

Fermis are undirected arrows.
Chirals are directed arrows.

Recent Extensions of Seiberg Duality by Physicists

Corresponding geometric and combinatorial model of Brane Bricks developed by Franco-Lee-Seong (2015); an extension of Brane Tilings.

Brane Brick Model
D4-brancs \odot
NS5-brane

Gauge Theory

© Gauge group
(c) Chiral
(c) Fermi
(1) J- or E-term plaquette

Recent Extensions of Seiberg Duality by Physicists

Example $Q^{1,1,1}$:

$-$

4

G. Musiker (University of Minnesota)

Higher Cluster Categories and QFTs
October 4, 2019
$30 / 68$

Recent Extensions of Seiberg Duality by Physicists

Example $Q^{1,1,1} / \mathbb{Z}_{2}$ (J-terms and E-terms):

$$
\begin{gathered}
W=\Lambda_{21}^{+} x_{15}^{+} x_{56}^{-} x_{62}^{-}-\Lambda_{21}^{+} x_{15}^{-} x_{56}^{-} x_{62}^{+}+\Lambda_{12}^{-} x_{24}^{+} x_{43}^{+} x_{31}^{-}-\Lambda_{12}^{-} x_{24}^{-} x_{43}^{+} x_{31}^{+}+\Lambda_{21}^{-} x_{15}^{-} x_{56}^{+} x_{62}^{+}-\Lambda_{21}^{-} x_{15}^{+} x_{56}^{+} x_{62}^{-} \\
+\Lambda_{12}^{+} x_{24}^{+} x_{43}^{-} x_{31}^{-}-\Lambda_{12}^{+} x_{24}^{-} x_{43}^{-} x_{31}^{+}+\Lambda_{78}^{+} x_{84}^{+} x_{43}^{-} x_{37}^{-}-\Lambda_{78}^{+} x_{84}^{-} x_{43}^{-} x_{37}^{+}+\Lambda_{87}^{-} x_{75}^{+} x_{56}^{+} x_{68}^{-}-\Lambda_{87}^{-} x_{75}^{-} x_{56}^{+} x_{68}^{+} \\
+\Lambda_{78}^{-} x_{84}^{-} x_{43}^{+} x_{37}^{+}-\Lambda_{78}^{-} x_{84}^{+} x_{43}^{+} x_{37}^{-}+\Lambda_{87}^{+} x_{75}^{+} x_{56}^{-} x_{68}^{-}-\Lambda_{87}^{+} x_{75}^{-} x_{56}^{-} x_{68}^{+}+\Lambda_{64}^{++} x_{43}^{+} x_{37}^{-} x_{75}^{-} x_{56}^{-}-\Lambda_{64}^{++} x_{43}^{-} x_{31}^{-} x_{15}^{-} x_{56}^{+} \\
+\Lambda_{46}^{-} x_{62}^{+} x_{24}^{+}-\Lambda_{46}^{-} x_{68}^{+} x_{84}^{+}+\Lambda_{64}^{-}-x_{43}^{+} x_{31}^{+} x_{15}^{+} x_{56}^{-}-\Lambda_{64}^{-} x_{43}^{-} x_{37}^{+} x_{75}^{+} x_{56}^{+} \\
+\Lambda_{46}^{++} x_{62}^{-} x_{24}^{-}-\Lambda_{46}^{++} x_{68}^{-} x_{84}^{-}+\Lambda_{64}^{+-} x_{43}^{-} x_{31}^{+} x_{15}^{-} x_{56}^{+}-\Lambda_{64}^{+-} x_{43}^{+} x_{37}^{-} x_{75}^{+} x_{56}^{-} \\
+\Lambda_{35}^{++} x_{56}^{+} x_{62}^{-} x_{24}^{-} x_{43}^{-}-\Lambda_{35}^{++} x_{56}^{-} x_{68}^{-} x_{84}^{-} x_{43}^{+}+\Lambda_{53}^{--} x_{37}^{+} x_{75}^{+}-\Lambda_{53}^{--} x_{31}^{+} x_{15}^{+}+\Lambda_{35}^{--} x_{56}^{+} x_{68}^{+} x_{84}^{+} x_{43}^{-}-\Lambda_{35}^{-} x_{56}^{-} x_{62}^{+} x_{24}^{+} x_{43}^{+} \\
+\Lambda_{53}^{++} x_{37}^{-} x_{75}^{-}-\Lambda_{53}^{++} x_{31}^{-} x_{15}^{-}+\Lambda_{35}^{+-} x_{56}^{-} x_{68}^{+} x_{84}^{-} x_{43}^{+}-\Lambda_{35}^{+-} x_{56}^{+} x_{62}^{-} x_{24}^{+} x_{43}^{-}+\Lambda_{53}^{-+} x_{37}^{+} x_{75}^{-}-\Lambda_{53}^{-+} x_{31}^{-} x_{15}^{+} \\
+\Lambda_{35}^{-+} x_{56}^{-} x_{62}^{+} x_{24}^{-} x_{43}^{+}-\Lambda_{35}^{-+} x_{56}^{+} x_{68}^{-} x_{84}^{+} x_{43}^{-}+\Lambda_{53}^{+-} x_{37}^{-} x_{75}^{+}-\Lambda_{53}^{+-} x_{31}^{+} x_{15}^{-}
\end{gathered}
$$

Recent Extensions of Seiberg Duality by Physicists

Example $Q^{1,1,1} / \mathbb{Z}_{2}$ After Mutation at 1 :

$$
\begin{gathered}
w^{\prime}=x_{21}^{+} \Lambda_{15}^{+} x_{56}^{-} x_{62}^{-}-x_{21}^{+} \Lambda_{15}^{-} x_{56}^{-} x_{62}^{+}+x_{24}^{+} x_{43}^{+} \Lambda_{32}^{--}-x_{24}^{-} x_{43}^{+} \Lambda_{32}^{+-}+\Lambda_{23}^{-+} x_{37}^{+} x_{75}^{+} x_{56}^{-} x_{62}^{-} \\
+\Lambda_{23}^{++} x_{37}^{+} x_{75}^{-} x_{56}^{-} x_{62}^{-}-\Lambda_{23}^{-+} x_{37}^{-} x_{75}^{+} x_{56}^{-} x_{62}^{+}-\Lambda_{23}^{++} x_{37}^{-} x_{75}^{-} x_{56}^{-} x_{62}^{+}+\Lambda_{32}^{--} x_{21}^{+} x_{13}^{+}+\Lambda_{32}^{+-} x_{21}^{+} x_{13}^{-}+x_{21}^{-} \Lambda_{15}^{-} x_{56}^{+} x_{62}^{+} \\
-x_{21}^{-} \Lambda_{15}^{+} x_{56}^{+} x_{62}^{-}+x_{24}^{+} x_{43}^{-} \Lambda_{32}^{-+}-x_{24}^{-} x_{43}^{-} \Lambda_{32}^{++}+\Lambda_{23}^{--} x_{37}^{-} x_{75}^{+} x_{56}^{+} x_{62}^{+}+\Lambda_{23}^{+-} x_{37}^{-} x_{75}^{-} x_{56}^{+} x_{62}^{+}-\Lambda_{23}^{--} x_{37}^{+} x_{75}^{+} x_{56}^{+} x_{62}^{-} \\
-\Lambda_{23}^{+-} x_{37}^{+} x_{75}^{-} x_{56}^{+} x_{62}^{-}+\Lambda_{32}^{-+} x_{21}^{-} x_{13}^{+}+\Lambda_{32}^{++} x_{21}^{-} x_{13}^{-}+\Lambda_{78}^{+} x_{84}^{+} x_{43}^{-} x_{37}^{-}-\Lambda_{78}^{+} x_{84}^{-} x_{43}^{-} x_{37}^{+}+\Lambda_{87}^{-} x_{75}^{+} x_{56}^{+} x_{68}^{-}-\Lambda_{87}^{-} x_{75}^{-} x_{56}^{+} x_{68}^{+} \\
+\Lambda_{78}^{-} x_{84}^{-} x_{43}^{+} x_{37}^{+}-\Lambda_{78}^{-} x_{84}^{+} x_{43}^{+} x_{37}^{-}+\Lambda_{87}^{+} x_{75}^{+} x_{56}^{-} x_{68}^{-}-\Lambda_{87}^{+} x_{75}^{-} x_{56}^{-} x_{68}^{+}+\Lambda_{64}^{++} x_{43}^{+} x_{37}^{-} x_{75}^{-} x_{56}^{-}-\Lambda_{64}^{++} x_{43}^{-} x_{37}^{-} x_{75}^{+} x_{56}^{+} \\
+\Lambda_{46}^{-}-x_{62}^{+} x_{24}^{+}-\Lambda_{46}^{-}-x_{68}^{+} x_{84}^{+}+x_{37}^{-} x_{75}^{+} \Lambda_{51}^{+} x_{13}^{+}+\Lambda_{64}^{-}-x_{43}^{+} x_{37}^{+} x_{75}^{-} x_{56}^{-}-\Lambda_{64}^{-}-x_{43}^{-} x_{37}^{+} x_{75}^{+} x_{56}^{+}+\Lambda_{46}^{++} x_{62}^{-} x_{24}^{-}-\Lambda_{46}^{++} x_{68}^{-} x_{84}^{-} \\
\quad-x_{37}^{+} x_{75}^{-} \Lambda_{51}^{-} x_{13}^{-}+\Lambda_{64}^{+-} x_{43}^{-} x_{37}^{-} x_{75}^{-} x_{56}^{+}-\Lambda_{64}^{+-} x_{43}^{+} x_{37}^{-} x_{75}^{+} x_{56}^{-}+\Lambda_{46}^{-+} x_{62}^{+} x_{24}^{-}-\Lambda_{46}^{-+} x_{68}^{-} x_{84}^{+} \\
-x_{37}^{-} x_{75}^{-} \Lambda_{51}^{+} x_{13}^{-}+\Lambda_{64}^{-+} x_{43}^{-} x_{37}^{+} x_{75}^{-} x_{56}^{+}-\Lambda_{64}^{-+} x_{43}^{+} x_{37}^{+} x_{75}^{+} x_{56}^{-}+\Lambda_{46}^{+-} x_{62}^{-} x_{24}^{+}-\Lambda_{46}^{+-} x_{68}^{+} x_{84}^{-}+x_{37}^{+} x_{75}^{+} \Lambda_{51}^{-} x_{13}^{+}
\end{gathered}
$$

Recent Extensions of Seiberg Duality by Physicists

Franco-Lee-Seong-Vafa (2016) then developed an $(N=1)$ 0-dimensional super-symmetric quiver gauge theory and a mutation known as Quadrality.

Fermis and Chirals are both directed arrows in this case.
Notice the new Fermi from $N_{3} \rightarrow N_{1}$ after the initial Quadrality.
Question: Mathematical Model for Mutations and associated Relations?

Path Algebra (Example for A_{n} Quivers)

The A_{n} quiver Q is $n \longleftarrow _n-1 \lessdot \ldots \longleftarrow 2 \longleftarrow<1$.
The path algebra $k Q$ has elements given by the paths
$p_{j i}: j \longleftarrow j-1 \longleftarrow \ldots \longleftarrow i+1 \longleftarrow i$ for $1 \leq i<j \leq n$,
and the idempotents e_{i}. Note $p_{j i} \cdot p_{\ell k}=\left\{\begin{array}{l}p_{j k} \text { if } i=\ell \\ 0 \text { otherwise }\end{array}\right.$.
As an algebra,

$$
k Q \cong\{\text { lower triangular } n \times n \text { matrices over } k\}
$$

$p_{j i}$ corresponds to $E_{j i}$ which has a 1 in column i, row j and 0 elsewhere.
e_{i} corresponds to $E_{i i}$.

Path Algebra (Example for A_{2} Quiver)

The A_{2} quiver Q is $2 \leftarrow 1$ with path algebra $k Q$ given by

$$
\left\{e_{1}, e_{2}, p_{21}: e_{2} \cdot p_{21}=p_{21}, p_{21} \cdot e_{1}=p_{21}, e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2}\right\}
$$

with all other products equal to zero.
Under the isomorphism with lower triangular 2×2 matrices,

$$
e_{1} \leftrightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad e_{2} \leftrightarrow\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad \text { and } p_{21} \leftrightarrow\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category $\mathcal{D}^{b}(k Q)$ has indecomposable objects of the form $M[i]$ (M indecomposable of $k Q$ and $i \in \mathbb{Z}$ with shift functor [1]).

Example (A_{2} Quiver): $2 \leftarrow 1$ admits three indecomposable modules

$$
P_{1}=\left\langle e_{1}, p_{21}\right\rangle=I_{2}, \quad P_{2}=\left\langle e_{2}\right\rangle, \quad I_{1}=\left\langle e_{1}\right\rangle .
$$

The indecomposables of $\mathcal{D}^{b}(k(2 \leftarrow 1))$ can be arranged as

From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category $\mathcal{D}^{b}(k Q)$ has indecomposable objects of the form $M[i]$ (M indecomposable of $k Q$ and $i \in \mathbb{Z}$ with shift functor [1]).
$\mathcal{D}^{b}(k Q)$ is also a triangulated category meaning there are certain distinguished short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ known as almost split sequences. (Correspond to triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$)

An almost split exact sequence is not split, i.e. $B \not \approx A \oplus C$ be is irreducible (i.e. as close to being split without being split).

From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category $\mathcal{D}^{b}(k Q)$ has indecomposable objects of the form $M[i]$ (M indecomposable of $k Q$ and $i \in \mathbb{Z}$ with shift functor [1]).
$\mathcal{D}^{b}(k Q)$ is also a triangulated category meaning there are certain distinguished short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ known as almost split sequences. (Correspond to triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$)

An almost split exact sequence is not split, i.e. $B \not \approx A \oplus C$ be is irreducible (i.e. as close to being split without being split).

Given an indecomposable module C, there is a unique almost split sequence of the form $0 \rightarrow_{-} \rightarrow_{-} C \rightarrow 0$.

From Path Algebras to Cluster Categories (Acyclic Case)

The bounded derived category $\mathcal{D}^{b}(k Q)$ has indecomposable objects of the form $M[i]$ (M indecomposable of $k Q$ and $i \in \mathbb{Z}$ with shift functor [1]).
$\mathcal{D}^{b}(k Q)$ is also a triangulated category meaning there are certain distinguished short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ known as almost split sequences. (Correspond to triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$)

An almost split exact sequence is not split, i.e. $B \not \approx A \oplus C$ be is irreducible (i.e. as close to being split without being split).

Given an indecomposable module C, there is a unique almost split sequence of the form $0 \rightarrow_{-} \rightarrow_{-} C \rightarrow 0$.

The Auslander-Reiten translation τC of indecomposable C is the unique indecomposable such that $0 \rightarrow \tau C \rightarrow_{-} \rightarrow C \rightarrow 0$ is almost split.

Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation τC of indecomposable C is the unique indecomposable such that $0 \rightarrow \tau C \rightarrow{ }_{-} \rightarrow C \rightarrow 0$ is almost split.
τ has the property that it sends projective indecomposable objects to zero and otherwise sends non-projective indecomposables to indecomposables.)

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster Category $\mathcal{C}_{1}(k Q)$ is defined as $\mathcal{D}^{b}(k Q) /\left(\tau^{-1} \circ[1]\right)$ where τ is Auslander-Reiten translation and [1] is the shift functor .

Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation τC of indecomposable C is the unique indecomposable such that $0 \rightarrow \tau C \rightarrow_{-} \rightarrow C 0$ is almost split.
τ has the property that it sends projective indecomposable objects to zero and otherwise sends non-projective indecomposables to indecomposables.)

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster Category $\mathcal{C}_{1}(k Q)$ is defined as $\mathcal{D}^{b}(k Q) /\left(\tau^{-1} \circ[1]\right)$ where τ is Auslander-Reiten translation and [1] is the shift functor .

In this quotient, $\tau P_{i}=P_{i}[1]$ rather than zero. Furthermore, $\tau P_{i}[1]=I_{i}$.

Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation τC of indecomposable C is the unique indecomposable such that $0 \rightarrow \tau C \rightarrow_{-} \rightarrow C 0$ is almost split.
τ has the property that it sends projective indecomposable objects to zero and otherwise sends non-projective indecomposables to indecomposables.)

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster Category $\mathcal{C}_{1}(k Q)$ is defined as $\mathcal{D}^{b}(k Q) /\left(\tau^{-1} \circ[1]\right)$ where τ is Auslander-Reiten translation and [1] is the shift functor .

In this quotient, $\tau P_{i}=P_{i}[1]$ rather than zero. Furthermore, $\tau P_{i}[1]=I_{i}$.
Example (A_{2} quiver):

Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation τC of indecomposable C is the unique indecomposable such that $0 \rightarrow \tau C \rightarrow_{-} \rightarrow C 0$ is almost split.
τ has the property that it sends projective indecomposable objects to zero and otherwise sends non-projective indecomposables to indecomposables.)

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster Category $\mathcal{C}_{1}(k Q)$ is defined as $\mathcal{D}^{b}(k Q) /\left(\tau^{-1} \circ[1]\right)$ where τ is Auslander-Reiten translation and [1] is the shift functor .

In this quotient, $\tau P_{i}=P_{i}[1]$ rather than zero. Furthermore, $\tau P_{i}[1]=I_{i}$.
Example (A_{2} quiver):

Cluster Categories (Acyclic Case)

(The Auslander-Reiten translation τC of indecomposable C is the unique indecomposable such that $0 \rightarrow \tau C \rightarrow_{-} \rightarrow C 0$ is almost split.
τ has the property that it sends projective indecomposable objects to zero and otherwise sends non-projective indecomposables to indecomposables.)

Def. (Buan-Marsh-Reineke-Reiten-Todorov 2004): The Cluster Category $\mathcal{C}_{1}(k Q)$ is defined as $\mathcal{D}^{b}(k Q) /\left(\tau^{-1} \circ[1]\right)$ where τ is Auslander-Reiten translation and [1] is the shift functor .

In this quotient, $\tau P_{i}=P_{i}[1]$ rather than zero. Furthermore, $\tau P_{i}[1]=I_{i}$.
Example (A_{2} quiver):

Tilting Objects in a Cluster Category

Given an acyclic quiver Q and the associated cluster algebra $\mathcal{A}(Q)$, then clusters correspond to Tilting Objects in the Cluster Category $\mathcal{C}_{1}(k Q)$.
Tilting Objects $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ satisfy

1) $\operatorname{Ext}\left(M_{i}, M_{j}\right)=\operatorname{Ext}\left(M_{j}, M_{j}\right)=0$ for $i \neq j$ and $\operatorname{Ext}\left(M_{i}, M_{i}\right)=0$ for all i.
2) The value of n equals the number of vertices in Q.

Tilting Objects in a Cluster Category

Given an acyclic quiver Q and the associated cluster algebra $\mathcal{A}(Q)$, then clusters correspond to Tilting Objects in the Cluster Category $\mathcal{C}_{1}(k Q)$.

Tilting Objects $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ satisfy

1) $\operatorname{Ext}\left(M_{i}, M_{j}\right)=\operatorname{Ext}\left(M_{j}, M_{j}\right)=0$ for $i \neq j$ and $\operatorname{Ext}\left(M_{i}, M_{i}\right)=0$ for all i.
2) The value of n equals the number of vertices in Q.

Equivalently, $\quad 1$ ' $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for all i, j.

Tilting Objects in a Cluster Category

Given an acyclic quiver Q and the associated cluster algebra $\mathcal{A}(Q)$, then clusters correspond to Tilting Objects in the Cluster Category $\mathcal{C}_{1}(k Q)$.

Tilting Objects $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$ satisfy

1) $\operatorname{Ext}\left(M_{i}, M_{j}\right)=\operatorname{Ext}\left(M_{j}, M_{j}\right)=0$ for $i \neq j$ and $\operatorname{Ext}\left(M_{i}, M_{i}\right)=0$ for all i.
2) The value of n equals the number of vertices in Q.

Equivalently, $\quad 1$ ' $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for all i, j.
Letting $\bar{T}=T \backslash M_{j}$, there is a unique $M_{j}^{\prime} \neq M_{j}$ such that

$$
\begin{aligned}
& M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{\prime} \rightarrow M_{j}[1] \\
& M_{j}^{\prime} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j} \rightarrow M_{j}^{\prime}[1]
\end{aligned}
$$

are distinguished triangles (analogues of almost split sequences) in $\mathcal{C}_{1}(k Q)$.
Corresponds to cluster mutation as $x_{j} x_{j}^{\prime}=\prod_{i} x_{B_{i}^{(1)}}+\prod_{k} x_{B_{i}^{(0)}}$.

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.
The cluster algebra of type A_{2} (associated to $2 \leftarrow 1$) has clusters

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \xrightarrow{\mu_{1}}\left\{x_{3}, x_{2}\right\} \xrightarrow{\mu_{2}}\left\{x_{3}, x_{4}\right\} \\
& \begin{aligned}
\\
\cong \\
\vdots \\
\vdots
\end{aligned} \\
& \left\{x_{2}, x_{1}\right\} \underset{\mu_{1}}{<}\left\{x_{5}, x_{1}\right\} \not \mu_{2}\left\{x_{5}, x_{4}\right\}
\end{aligned}
$$

where

$$
x_{3}=\frac{x_{2}+1}{x_{1}}, \quad x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}, \text { and } x_{5}=\frac{x_{1}+1}{x_{2}} .
$$

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.
The cluster algebra of type A_{2} (associated to $2 \leftarrow 1$) has clusters

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \xrightarrow{\mu_{1}}\left\{x_{3}, x_{2}\right\} \xrightarrow{\mu_{2}}\left\{x_{3}, x_{4}\right\} \\
& \begin{aligned}
1 \\
\cong \\
\vdots
\end{aligned} \\
& \left\{x_{2}, x_{1}\right\} \underset{\mu_{1}}{<}\left\{x_{5}, x_{1}\right\} \not \mu_{2}\left\{x_{5}, x_{4}\right\}
\end{aligned}
$$

where

$$
x_{3}=\frac{x_{2}+1}{x_{1}}, \quad x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}, \text { and } x_{5}=\frac{x_{1}+1}{x_{2}} .
$$

Compared with $\mathcal{C}_{1}(k(2 \leftarrow 1))$, we have $\left\{x_{1}, x_{2}\right\} \longleftrightarrow P_{1}[1] \oplus P_{2}[1]$.

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.
The cluster algebra of type A_{2} (associated to $2 \leftarrow 1$) has clusters

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \xrightarrow{\mu_{1}}\left\{x_{3}, x_{2}\right\} \xrightarrow{\mu_{2}}\left\{x_{3}, x_{4}\right\} \\
& \begin{aligned}
\\
\cong \\
\vdots \\
\mid
\end{aligned} \quad \downarrow \mu_{1} \\
& \left\{x_{2}, x_{1}\right\} \underset{\mu_{1}}{<}\left\{x_{5}, x_{1}\right\} \not \mu_{2}\left\{x_{5}, x_{4}\right\}
\end{aligned}
$$

where

$$
x_{3}=\frac{x_{2}+1}{x_{1}}, \quad x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}, \text { and } x_{5}=\frac{x_{1}+1}{x_{2}} .
$$

Compared with $\mathcal{C}_{1}(k(2 \leftarrow 1))$, we have $\left\{x_{3}, x_{2}\right\} \longleftrightarrow I_{1} \oplus P_{2}$ [1].

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.
The cluster algebra of type A_{2} (associated to $2 \leftarrow 1$) has clusters

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \xrightarrow{\mu_{1}}\left\{x_{3}, x_{2}\right\} \xrightarrow{\mu_{2}}\left\{x_{3}, x_{4}\right\} \\
& \begin{aligned}
\\
\cong \\
\vdots \\
\vdots
\end{aligned} \\
& \left\{x_{2}, x_{1}\right\} \underset{\mu_{1}}{<}\left\{x_{5}, x_{1}\right\} \not \mu_{2}\left\{x_{5}, x_{4}\right\}
\end{aligned}
$$

where

$$
x_{3}=\frac{x_{2}+1}{x_{1}}, \quad x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}, \text { and } x_{5}=\frac{x_{1}+1}{x_{2}} .
$$

Compared with $\mathcal{C}_{1}(k(2 \leftarrow 1))$, we have $\quad\left\{x_{3}, x_{4}\right\} \longleftrightarrow I_{1} \oplus P_{1}$.

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.
The cluster algebra of type A_{2} (associated to $2 \leftarrow 1$) has clusters

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \xrightarrow{\mu_{1}}\left\{x_{3}, x_{2}\right\} \xrightarrow{\mu_{2}}\left\{x_{3}, x_{4}\right\} \\
& \begin{aligned}
1 \\
\cong \\
\vdots
\end{aligned} \\
& \left\{x_{2}, x_{1}\right\} \underset{\mu_{1}}{<}\left\{x_{5}, x_{1}\right\} \not \mu_{2}\left\{x_{5}, x_{4}\right\}
\end{aligned}
$$

where

$$
x_{3}=\frac{x_{2}+1}{x_{1}}, \quad x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}, \text { and } x_{5}=\frac{x_{1}+1}{x_{2}} .
$$

Compared with $\mathcal{C}_{1}(k(2 \leftarrow 1))$, we have $\quad\left\{x_{5}, x_{4}\right\} \longleftrightarrow P_{2} \oplus P_{1}$.

Cluster Algebra and Cluster Category of Type A_{2}

Tilting Object $M_{1} \oplus M_{2}$ satisfies $\operatorname{Hom}\left(M_{i}, M_{j}[1]\right)=0$ for $i, j \in\{1,2\}$.
The cluster algebra of type A_{2} (associated to $2 \leftarrow 1$) has clusters

$$
\begin{aligned}
& \left\{x_{1}, x_{2}\right\} \xrightarrow{\mu_{1}}\left\{x_{3}, x_{2}\right\} \xrightarrow{\mu_{2}}\left\{x_{3}, x_{4}\right\} \\
& \begin{aligned}
& \\
& \cong \\
& \cong \\
& \\
& \\
&\left\{x_{2}, x_{1}\right\} \downarrow \mu_{1}
\end{aligned} \\
& \left\{x_{2}, x_{1}\right\} \underset{\mu_{1}}{\leftarrow}\left\{x_{5}, x_{1}\right\} \underset{\mu_{2}}{\leftarrow}\left\{x_{5}, x_{4}\right\}
\end{aligned}
$$

where

$$
x_{3}=\frac{x_{2}+1}{x_{1}}, \quad x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}}, \text { and } x_{5}=\frac{x_{1}+1}{x_{2}}
$$

Compared with $\mathcal{C}_{1}(k(2 \leftarrow 1))$, we have $\quad\left\{x_{5}, x_{1}\right\} \longleftrightarrow P_{2} \oplus P_{1}[1]$.

Cluster Algebra and Cluster Category of Type A_{2}

Observe we have the correpondence

$$
\begin{gathered}
x_{1} \longleftrightarrow P_{1}[1] \\
x_{2} \longleftrightarrow P_{2}[1] \\
x_{3}=\frac{x_{2}+1}{x_{1}} \longleftrightarrow I_{1}=\left\langle e_{1}\right\rangle \\
x_{4}=\frac{x_{1}+x_{2}+1}{x_{1} x_{2}} \longleftrightarrow P_{1}=\left\langle e_{1}, p_{21}\right\rangle \\
x_{5}=\frac{x_{1}+1}{x_{2}} \longleftrightarrow P_{2}=\left\langle e_{2}\right\rangle
\end{gathered}
$$

There is a general map (Caledro-Chapton's Cluster Character) from rigid indecomposable modules of $\mathcal{C}_{1}(k Q)$ to cluster variables by $M \rightarrow x_{M}$.

Reading off the Quiver from a Tilting Object

Given a tilting module $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$, we build the quiver Q_{T} by starting with n disconnected vertices.

Reading off the Quiver from a Tilting Object

Given a tilting module $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$, we build the quiver Q_{T} by starting with n disconnected vertices.

If there exists the distinguished triangle
$A \rightarrow B \rightarrow M_{j} \rightarrow A[1] \quad$ where B contains $M_{i}^{b_{i j}}$ as a direct summand then we adjoin $b_{i j}$ copies of the arrow $i \rightarrow j$ to our quiver Q_{T}.

Reading off the Quiver from a Tilting Object

Given a tilting module $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$, we build the quiver Q_{T} by starting with n disconnected vertices.

If there exists the distinguished triangle

$$
A \rightarrow B \rightarrow M_{j} \rightarrow A[1] \quad \text { where } B \text { contains } M_{i}^{b_{i j}} \text { as a direct summand }
$$ then we adjoin $b_{i j}$ copies of the arrow $i \rightarrow j$ to our quiver Q_{T}.

Similarly, if there exists the distinguished triangle $M_{j} \rightarrow B \rightarrow C \rightarrow M_{j}[1] \quad$ where B contains $M_{k}^{b_{j k}}$ as a direct summand, then we then adjoin $b_{j k}$ copies of the arrow $j \rightarrow k$ to Q_{T}.

Reading off the Quiver from a Tilting Object

Given a tilting module $T=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$, we build the quiver Q_{T} by starting with n disconnected vertices.
If there exists the distinguished triangle

$$
A \rightarrow B \rightarrow M_{j} \rightarrow A[1] \quad \text { where } B \text { contains } M_{i}^{b_{i j}} \text { as a direct summand }
$$ then we adjoin $b_{i j}$ copies of the arrow $i \rightarrow j$ to our quiver Q_{T}.

Similarly, if there exists the distinguished triangle $M_{j} \rightarrow B \rightarrow C \rightarrow M_{j}[1] \quad$ where B contains $M_{k}^{b_{j k}}$ as a direct summand, then we then adjoin $b_{j k}$ copies of the arrow $j \rightarrow k$ to Q_{T}.
Cluster variable mutation of Q_{T}, i.e. $x_{j} x_{j}^{\prime}=\prod_{i \rightarrow j \in Q_{T}} x_{i}^{b_{i j}}+\prod_{j \rightarrow k \in Q_{T}} x_{k}^{b_{k j}}$ agrees with the relation $\quad x_{j} x_{j}^{\prime}=\prod_{i} x_{B_{i}^{(1)}} \quad+\prod_{i} x_{B_{i}^{(0)}}$ coming from the distinguished triangles

$$
M_{j}^{\prime} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j} \rightarrow M_{j}^{\prime}[1] \quad \text { and } \quad M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{\prime} \rightarrow M_{j}[1] .
$$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

(Thomas 2006) generalizes the cluster category $\mathcal{C}_{1}(k Q)=\mathcal{D}^{b}(k Q) / \tau^{-1}[1]$:

Given an acyclic quiver Q, define the m-Cluster Category as the quotient category

$$
\mathcal{C}_{m}(k Q)=\mathcal{D}^{b}(k Q) / \tau^{-1}[m] .
$$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

(Thomas 2006) generalizes the cluster category $\mathcal{C}_{1}(k Q)=\mathcal{D}^{b}(k Q) / \tau^{-1}[1]$:

Given an acyclic quiver Q, define the m-Cluster Category as the quotient category

$$
\mathcal{C}_{m}(k Q)=\mathcal{D}^{b}(k Q) / \tau^{-1}[m] .
$$

Indecomposable Objects of $\mathcal{C}_{m}(k Q)$ are

$$
\begin{aligned}
\{M: M \text { indec. }\} \cup\{M[1]: M \text { indec. }\} \cup & \cdots \cup\{M[m-1]: M \text { indec. }\} \\
& \cup\left\{P_{1}[m], P_{2}[m], \ldots, P_{n}[m]\right\}
\end{aligned}
$$

where $P_{1}, P_{2}, \ldots, P_{n}$ are the projective indecomposables of $k Q$.
(n is the number of vertices of Q)

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$: $P_{1}[2] \oplus P_{2}[2]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1)): \quad I_{1}[1] \oplus P_{2}[2]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$: $\quad I_{1} \oplus P_{2}$ [2]

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$: $\quad P_{1}[1] \oplus \mathscr{I}_{1}[1]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$: $\quad P_{1} \oplus I_{1}[1]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$:
$P_{1}[1] \oplus P_{2}[1]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$: $\quad P_{1}[1] \oplus P_{2}$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$:
$I_{1} \oplus P_{2}[1]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$: $\quad P_{1}[2] \oplus P_{2}[1]$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$:

$$
P_{1} \oplus I_{1}
$$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$:
$P_{1} \oplus P_{2}$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

Example (A_{2} quiver): The 2-cluster category $\mathcal{C}_{2}(k(2 \leftarrow 1))$ has indecomposables

where we get periodicity with $P_{1}[2] \rightarrow P_{2}$.
There are 12 higher tilting objects in $\mathcal{C}_{2}(k(2 \leftarrow 1))$:
$P_{1}[2] \oplus P_{2}$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

We can get a Colored Quiver from a Higher Tilting Object T since there are $(m+1)$ ways to complete $\bar{T}=T \backslash M_{j}$ in $\mathcal{C}_{m}(k Q)=\mathcal{D}^{b}(k Q) / \tau^{-1}[m]$:

$$
T=T^{(0)}=\bar{T} \oplus M_{j}^{(0)}, \quad T^{(1)}=\bar{T} \oplus M_{j}^{(1)}, \quad T^{(2)}=\bar{T} \oplus M_{j}^{(2)}, \ldots, \quad T^{(m)}=\bar{T} \oplus M_{j}^{(m)} .
$$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

We can get a Colored Quiver from a Higher Tilting Object T since there are $(m+1)$ ways to complete $\bar{T}=T \backslash M_{j}$ in $\mathcal{C}_{m}(k Q)=\mathcal{D}^{b}(k Q) / \tau^{-1}[m]$:

$$
T=T^{(0)}=\bar{T} \oplus M_{j}^{(0)}, \quad T^{(1)}=\bar{T} \oplus M_{j}^{(1)}, \quad T^{(2)}=\bar{T} \oplus M_{j}^{(2)}, \ldots, \quad T^{(m)}=\bar{T} \oplus M_{j}^{(m)} .
$$

These fit together in distinguished triangles (using $M_{j}^{(m+1)}=M_{j}^{(0)}=M_{j}$)

$$
\begin{aligned}
& M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{(1)} \rightarrow M_{j}[1] \\
& M_{j}^{(1)} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j}^{(2)} \rightarrow M_{j}^{(1)}[1] \\
& M_{j}^{(2)} \rightarrow \oplus_{i} B_{i}^{(2)} \rightarrow M_{j}^{(3)} \rightarrow M_{j}^{(2)}[1] \\
& \vdots \\
& M_{j}^{(m-1)} \rightarrow \oplus_{i} B_{i}^{(m-1)} \rightarrow M_{j}^{(m)} \rightarrow M_{j}^{(m-1)}[1] \\
& M_{j}^{(m)} \rightarrow \oplus_{i} B_{i}^{(m)} \rightarrow M_{j} \rightarrow M_{j}^{(m)}[1]
\end{aligned}
$$

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

$$
\begin{aligned}
& M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{(1)} \rightarrow M_{j}[1] \\
& M_{j}^{(1)} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j}^{(2)} \rightarrow M_{j}^{(1)}[1] \\
& M_{j}^{(2)} \rightarrow \oplus_{i} B_{i}^{(2)} \rightarrow M_{j}^{(3)} \rightarrow M_{j}^{(2)}[1] \\
& \vdots \\
& M_{j}^{(m-1)} \rightarrow \oplus_{i} B_{i}^{(m-1)} \rightarrow M_{j}^{(m)} \rightarrow M_{j}^{(m-1)}[1] \\
& M_{j}^{(m)} \rightarrow \oplus_{i} B_{i}^{(m)} \rightarrow M_{j} \rightarrow M_{j}^{(m)}[1]
\end{aligned}
$$

Notice that in the special case $m=1$, we let $M_{j}^{(1)}=M_{j}^{\prime}$ and we get

$$
M_{j}^{\prime} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j} \rightarrow M_{j}^{\prime}[1] \quad \text { and } \quad M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{\prime} \rightarrow M_{j}[1]
$$

as desired.

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

$$
\begin{aligned}
& M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{(1)} \rightarrow M_{j}[1] \\
& M_{j}^{(1)} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j}^{(2)} \rightarrow M_{j}^{(1)}[1] \\
& M_{j}^{(2)} \rightarrow \oplus_{i} B_{i}^{(2)} \rightarrow M_{j}^{(3)} \rightarrow M_{j}^{(2)}[1] \\
& \vdots \\
& M_{j}^{(m-1)} \rightarrow \oplus_{i} B_{i}^{(m-1)} \rightarrow M_{j}^{(m)} \rightarrow M_{j}^{(m-1)}[1] \\
& M_{j}^{(m)} \rightarrow \oplus_{i} B_{i}^{(m)} \rightarrow M_{j} \rightarrow M_{j}^{(m)}[1]
\end{aligned}
$$

We build a colored quiver Q_{T} from T a tilting object of $\mathcal{C}_{m}(k Q)$ by adjoining $b_{i j}^{(c)}$ colored arrows $i \overleftarrow{(c)}^{<}$for every summand M_{i} in $\oplus_{i} B_{i}^{(c)}$.

Higher Cluster Categories/Colored Quivers (Buan-Thomas)

$$
\begin{aligned}
& M_{j} \rightarrow \oplus_{i} B_{i}^{(0)} \rightarrow M_{j}^{(1)} \rightarrow M_{j}[1] \\
& M_{j}^{(1)} \rightarrow \oplus_{i} B_{i}^{(1)} \rightarrow M_{j}^{(2)} \rightarrow M_{j}^{(1)}[1] \\
& M_{j}^{(2)} \rightarrow \oplus_{i} B_{i}^{(2)} \rightarrow M_{j}^{(3)} \rightarrow M_{j}^{(2)}[1] \\
& \vdots \\
& M_{j}^{(m-1)} \rightarrow \oplus_{i} B_{i}^{(m-1)} \rightarrow M_{j}^{(m)} \rightarrow M_{j}^{(m-1)}[1] \\
& M_{j}^{(m)} \rightarrow \oplus_{i} B_{i}^{(m)} \rightarrow M_{j} \rightarrow M_{j}^{(m)}[1]
\end{aligned}
$$

Because we can build the same tower of distinguished triangles using $M_{i}^{(c)}$'s in place of $M_{j}^{(c)}$, it follows that
colored arrows come in pairs $i \underset{(m-c)}{\sim} j$. (For $m=1, i \rightarrow j=i \overbrace{(1)}^{(0)} j$.

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

$$
P_{1}[2] \oplus P_{2}[2] \longleftrightarrow 2<\frac{\overbrace{(0)}^{(2)}}{\underset{\sim}{(0)}} 1=2 \leftarrow 1
$$

Mutating by μ_{1} yields

$$
I_{1}[1] \oplus P_{2}[2] \longleftrightarrow 2 \frac{(0)}{\underset{(2)}{\sim}} 1=2 \longrightarrow 1
$$

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

$$
P_{1}[2] \oplus P_{2}[2] \longleftrightarrow 2 \stackrel{(2)}{(0)}_{\sim}^{<} 1=2 \longleftarrow 1
$$

Mutating by μ_{1} yields

$$
I_{1}[1] \oplus P_{2}[2] \longleftrightarrow 2<\frac{(0)}{{ }_{(2)}} 1=2 \longrightarrow 1
$$

And mutating by μ_{1} a second time in a row yields

$$
\iota_{1} \oplus P_{2}[2] \longleftrightarrow 2 \underset{(1)}{\stackrel{(1)}{\rightleftharpoons}} 1=2---1
$$

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

Mutating a third time in a row by μ_{1} yields again

$$
P_{1}[2] \oplus P_{2}[2] \longleftrightarrow 2<\frac{\overbrace{(0)}^{\sim}}{\leftarrow} 1=2 \leftarrow 1
$$

i.e. $\mu_{i}^{3}=1$.

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

Mutating a third time in a row by μ_{1} yields again

$$
P_{1}[2] \oplus P_{2}[2] \longleftrightarrow 2<\frac{\overbrace{(0)}^{(2)}}{\rightleftharpoons} 1=2 \leftarrow 1
$$

i.e. $\mu_{i}^{3}=1$. (In general $\mu_{i}^{m+1}=1$, which agrees with $\mu^{2}=1$ for the ordinary $m=1$ case.)

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

Notice, on the other hand mutating $P_{1}[2] \oplus P_{2}[2]$ by μ_{2} yields

$$
P_{1}[2] \oplus P_{2}[1] \longleftrightarrow 2 \stackrel{(1)}{\gtrless_{(1)}} 1=2---1
$$

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

Notice, on the other hand mutating $P_{1}[2] \oplus P_{2}[2]$ by μ_{2} yields

$$
P_{1}[2] \oplus P_{2}[1] \longleftrightarrow 2 \stackrel{(1)}{\gtrless_{(1)}} 1=2---1
$$

And a second mutation by μ_{2} in a row yields

$$
P_{1}[2] \oplus P_{2} \longleftrightarrow 2 \underset{(2)}{\frac{(0)}{\sim}} 1=2 \longrightarrow 1
$$

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$

Such higher tilting objects can also be associated to quadrangulations (more generally ($m+2$)-angulations) of a polygon (in the type A_{n} case).

$$
P_{1}[2] \oplus P_{2}[2] \longleftrightarrow 2<\frac{(2)}{\overbrace{(0)}} 1=2 \longleftarrow 1
$$

$$
I_{1}[1] \oplus P_{2}[2] \longleftrightarrow 2<\frac{(0)}{\stackrel{(2)}{\sim}} 1=2 \longrightarrow 1
$$

$$
I_{1} \oplus P_{2}[2] \longleftrightarrow 2 \frac{(1)}{\frac{(1)}{<}} 1=2---1
$$

Colored Quiver Mutation (Buan-Thomas 2008)

A Colored Quiver $Q=\left(Q_{0}, Q_{1}\right)=\left(Q_{0}, Q_{1}^{(0)} \oplus Q_{1}^{(1)} \oplus Q_{1}^{(2)} \oplus \cdots \oplus Q_{1}^{(m)}\right)$ is a collection of vertices and arrows where arrows can have one of $(m+1)$ colors, which we label as $(0),(1), \ldots,(m)$, satisfying three properties:
(i) No loops: There are no arrows which have $i \in Q_{0}$ as both its starting and ending point.
(ii) Monochromaticity: If there is an arrow $i \longleftarrow^{(c)} j$ of color (c) between vertices $i, j \in Q_{0}$, then there are no arrows $i \stackrel{\left(c^{\prime}\right)}{\longleftarrow} j$ of any other color $\left(c^{\prime}\right)$, although multiple arrows of the same color are possible.
(iii) Skew-symmetry: If there are $q_{i j}^{(c)}$ arrows $i \leftarrow^{(c)} j$ of color (c), then there are also $q_{i j}^{(c)}$ arrows $i \xrightarrow{(m-c)} j$ of color $(m-c)$.

Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on them called Colored Quiver Mutation (at vertex j):

Step 1a: Replace every incoming arrow $j \lessdot{ }^{(c)} i$ with the arrow $j \stackrel{(c-1)}{\leftarrow} i$. Step 1 b : Replace every outgoing arrow $k{ }_{<}^{(c)} j$ with an arrow $k \stackrel{(c+1)}{<} j$.

Both of these values are taken modulo $(m+1)$. As special cases,

Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on them called Colored Quiver Mutation (at vertex j):

Step 1a: Replace every incoming arrow $j \lessdot{ }_{\leftarrow}^{(c)} i$ with the arrow $j \stackrel{(c-1)}{\leftarrow} i$. Step 1 b : Replace every outgoing arrow $k{ }_{<}^{(c)} j$ with an arrow $k \stackrel{(c+1)}{<} j$.
Both of these values are taken modulo $(m+1)$. As special cases,

Step 2: For every 2-path $k \underset{\longleftarrow}{(c)} j \underset{\longleftarrow}{\stackrel{(0)}{\longleftarrow}} j$ in Q, where the color of the outgoing arrow is (0), and $c \neq m$, add a new arrow $k \longleftarrow j$.

Colored Quiver Mutation (Buan-Thomas 2008)

Buan-Thomas not only define Colored Quivers, but define a dynamic on them called Colored Quiver Mutation (at vertex j):

Step 1a: Replace every incoming arrow $j \lessdot{ }_{<}^{(c)} i$ with the arrow $j \stackrel{(c-1)}{\leftarrow} i$. Step 1 b : Replace every outgoing arrow $k{ }_{<}^{(c)} j$ with an arrow $k \stackrel{(c+1)}{<} j$.
Both of these values are taken modulo $(m+1)$. As special cases,

Step 2: For every 2-path $k \underset{\longleftarrow}{(c)} j \underset{\longleftarrow}{\stackrel{(0)}{\longleftarrow}} j$ in Q, where the color of the outgoing arrow is (0), and $c \neq m$, add a new arrow $k \longleftarrow j$. Step 3: Delete two arrows of colors $i \stackrel{(c-1)}{\stackrel{(c)}{\gtrless}} k$ as a pair until monochromaticity is achieved again. (c) (Massive terms) Colored Quiver Mutation is of order $(m+1)$.

Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Colored Quivers and their mutations motivated by the the Higher Cluster Category, the triangulated $(m+1)$-Calabi-Yau category obtained by the quotient $\mathcal{D}^{b}(k Q) /\left(\tau^{-1} \circ[m]\right)$

Recall the Higher Tilting Objects are maximally dimensional direct sums of indecomposables which have no self-extensions.

Example of $\mathcal{C}_{2}(k(2 \leftarrow 1))$ from above:

$$
\begin{aligned}
& P_{1}[2] \oplus P_{2}[2] \longleftrightarrow 2 \ll{ }_{(0)}^{\stackrel{(2)}{\rightleftharpoons}} 1=2 \leftarrow 1 \\
& I_{1}[1] \oplus P_{2}[2] \longleftrightarrow 2 \frac{(0)}{\underset{(2)}{\sim}} 1=2 \longrightarrow 1 \\
& I_{1} \oplus P_{2}[2] \longleftrightarrow 2 \stackrel{(1)}{\sim} 1=2---1
\end{aligned}
$$

Colored Quiver Mutation Motivation (Buan-Thomas 2008)

When Q is of type A, the Higher Cluster-Tilting Objects in bijection with $(m+2)$-angulations of polygons. (Draw a colored arrow for number of sides between labeled diagonals counter-clockwise.)

Example (mutating at vertex 2 in $m=2$ case). We omit arrows of color (2) since $i \xrightarrow{(c)} j=i \stackrel{(m-c)}{\longleftrightarrow} j$.

$$
1-\frac{(\overline{1})}{}-2 \varkappa_{(0)} 3
$$

(1)

$$
1 \underset{(0)}{\longrightarrow} 2 \underset{(0)}{\longrightarrow} 3
$$

$$
=1{\underset{(0)}{ } 2-\frac{(1)}{}-3 .}^{2}
$$

Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Example (mutating at vertex 2 in $m=3$ case). We omit arrows of color (1), (3) and set $i \xrightarrow{(c)} j=i \stackrel{(m-c)}{\longleftrightarrow} j$.

$1<\frac{(2)}{<}-2<(0) 3$

$$
1 \underset{(0)}{\stackrel{-}{-}-\frac{(2)}{-}} 2 \underset{(0)}{\infty} 3
$$

$1-\underset{(2)}{ }>2-\underset{(2)}{ }>3$

$$
=1 \underset{(0)}{<} 2<\frac{-}{(2)}-3
$$

Colored Quiver Mutation Motivation (Buan-Thomas 2008)

Example (mutating at vertex 2 in $m=3$ case). We omit arrows of color (1), (3) and set $i \xrightarrow{(c)} j=i \stackrel{(m-c)}{\leftarrow} j$.

(2)

$$
1<\frac{-}{(2)}-2 \xrightarrow[(0)]{ } 3
$$

$$
1 \xrightarrow[(0)]{ }>2<\frac{-}{(2)}-3
$$

$$
1 \stackrel{<}{(0)} 2-
$$

$$
-\underset{(2)}{-}>3
$$

(2)

$$
1 \underset{(2)}{ } 3
$$

Fourth mutation at vertex 2 yields arrow $1-\stackrel{(2)}{-}>3$ that cancels with $1<\stackrel{(2)}{-}-3$ and we obtain the first colored quiver again.

Also relates to the Generalized Associahedra of Fomin-Reading (2006).

Triality corresponds to $m=2$ colored quiver mutation.

(1)
(1)
\triangleleft Conifold $\times \mathbb{C}$

	J	E
$\Lambda_{12}^{1}:$	$X_{21} \cdot X_{12} \cdot Y_{21}-Y_{21} \cdot X_{12} \cdot X_{21}=0$	$\Phi_{11} \cdot Y_{12}-Y_{12} \cdot \Phi_{22}=0$
$\Lambda_{21}^{1}:$	$X_{12} \cdot Y_{21} \cdot Y_{12}-Y_{12} \cdot Y_{21} \cdot X_{12}=0$	$\Phi_{22} \cdot X_{21}-X_{21} \cdot \Phi_{11}=0$
$\Lambda_{12}^{2}:$	$Y_{21} \cdot Y_{12} \cdot X_{21}-X_{21} \cdot Y_{12} \cdot Y_{21}=0$	$\Phi_{11} \cdot X_{12}-X_{12} \cdot \Phi_{22}=0$
$\Lambda_{21}^{2}:$	$Y_{12} \cdot X_{21} \cdot X_{12}-X_{12} \cdot X_{21} \cdot Y_{12}=0$	$\Phi_{22} \cdot Y_{21}-Y_{21} \cdot \Phi_{11}=0$

Draw Fermis as $i=-j$ and Chirals as
(1)

(2)

Now Allowed: Loops and Arcs of Different Colors Between Two Vertices.
We wish to deduce J-term and E-term Relations from Potentials for Colored Quivers.

Quadrality corresponds to $m=3$ colored quiver mutation.

(2)

Draw Directed Fermis as $i=j$ and Chirals as
(1)

(3)

Now Allowed: Loops and Arcs of Different Colors Between Two Vertices.
We wish to deduce J-term Relations from Potentials for Colored Quivers.
Physics also has H-term Relations. What is the Mathematics behind them?

(Franco-M 2017) Potentials for Colored Quivers

Based on the examples of $(m+2)$-angulations and brane bricks, we constructed a combinatorial theory of potentials for colored quivers.

(Franco-M 2017) Potentials for Colored Quivers

Based on the examples of $(m+2)$-angulations and brane bricks, we constructed a combinatorial theory of potentials for colored quivers.

We define a potential W for a colored quiver Q to be a linear combination of terms $\alpha_{1} \alpha_{2} \cdots \alpha_{k}$ of the path algebra, each satisfying
(1) The starting point of α_{i+1} is the ending point of α_{i} for $1 \leq i \leq k-1$; also the starting point of α_{1} is the ending point of α_{k}.
(2) Letting $c_{i} \in\{0,1,2, \ldots, m\}$ be the color of arrow α_{i}, we have

$$
c_{1}+c_{2}+\cdots+c_{k}=m-1
$$

Theorem: There are simple combinatorial rules so that mutation of potentials is compatible with assignment of potentials to a brane brick model or to an ($m+2$)-angulation of a polygon.

(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).
Step 1: For every incoming arrow $\alpha_{i j}^{(c)}=i \xrightarrow{(c)} j$ (resp. outgoing arrow
$\alpha_{j k}^{(c)}=j \xrightarrow{(c)} k$), replace it with $\alpha_{i j}^{(c-1)}=i \xrightarrow{(c-1)} j$ (resp.
$\left.\alpha_{j k}^{(c-1)}=j \xrightarrow{(c-1)} k\right)$ in Q. Values taken in $\{0,1,2, \ldots, m\} \bmod (m+1)$.

(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).
Step 1: For every incoming arrow $\alpha_{i j}^{(c)}=i \xrightarrow{(c)} j$ (resp. outgoing arrow
$\alpha_{j k}^{(c)}=j \xrightarrow{(c)} k$), replace it with $\alpha_{i j}^{(c-1)}=i \xrightarrow{(c-1)} j$ (resp.
$\left.\alpha_{j k}^{(c-1)}=j \xrightarrow{(c-1)} k\right)$ in Q. Values taken in $\{0,1,2, \ldots, m\} \bmod (m+1)$.
Step 2a: For every 2-path, $i \xrightarrow{(0)} j \xrightarrow{(c)} k$ in Q, where the color of the outgoing arrow is (0), add the new arrow $i \xrightarrow{(c)} k$ in Q and the new degree 3 term $\alpha_{i k}^{(c)} \alpha_{i j}^{(m)} \alpha_{j k}^{(c+1)}=\alpha_{i k}^{(c)} \alpha_{k j}^{(m-c-1)} \alpha_{j i}^{(0)}$ to W.

(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j). Step 2b: Replace instances of $\alpha_{i j}^{(0)} \alpha_{j k}^{(c)}$ in W with $\alpha_{i k}^{(c)}$. Step 2c: Replace instances of $\alpha_{i j}^{(c)} \alpha_{j k}^{(d)}$ in W with $\alpha_{i j}^{(c-1)} \alpha_{j k}^{(d+1)}$ when $c \neq 0$.

(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j). Step 2b: Replace instances of $\alpha_{i j}^{(0)} \alpha_{j k}^{(c)}$ in W with $\alpha_{i k}^{(c)}$. Step 2c: Replace instances of $\alpha_{i j}^{(c)} \alpha_{j k}^{(d)}$ in W with $\alpha_{i j}^{(c-1)} \alpha_{j k}^{(d+1)}$ when $c \neq 0$.
Step 2d: For a local configuration

$\alpha_{i_{1}, i_{2}}^{\left(c_{1}\right)} \cdots \alpha_{i_{k-1}, i_{k}}^{\left(c_{k}\right)} \alpha_{i_{k}, i_{1}}^{\left(c_{k}\right)}$ is in W, then add a new term to the potential $\alpha_{i_{0}, i_{2}}^{\left(c_{1}\right)} \cdots \alpha_{i_{k-1}, i_{k}}^{\left(c_{k-1}\right)} \alpha_{i_{k}, i_{0}}^{\left(c_{k}\right)}$

(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).
Step 3: Apply reductions of massive terms to get an equivalent colored quiver with potential. (Generically, delete massive terms as well as terms sharing an arrow with massive term. In special cases, more complicated.)

(Franco-M 2017) Potentials for Colored Quivers

We define Mutation of Colored Quivers with Potential (at vertex j).
Step 3: Apply reductions of massive terms to get an equivalent colored quiver with potential. (Generically, delete massive terms as well as terms sharing an arrow with massive term. In special cases, more complicated.)

Example ($\mathbf{m}=2$): We omit arrows of color (2) and set $\alpha_{i j}^{(c)}=\alpha_{j i}^{(m-c)}$.

$$
W=X_{21}^{(0)} X_{14}^{(0)} X_{45}^{(0)} X_{56}^{(0)} \Lambda_{62}^{(1)}+\Lambda_{26}^{(1)} X_{63}^{(0)} X_{32}^{(0)}
$$

(Franco-M 2017) Potentials for Colored Quivers

Example ($\mathbf{m}=\mathbf{2)}$: We omit arrows of color (2) and set $\alpha_{i j}^{(c)}=\alpha_{j i}^{(m-c)}$.

$$
W=X_{21}^{(0)} X_{14}^{(0)} X_{45}^{(0)} X_{56}^{(0)} \Lambda_{62}^{(1)}+\Lambda_{26}^{(1)} X_{63}^{(0)} X_{32}^{(0)}
$$

Mutating at vertex 6 via Rules (2a), (2b), (2c), (2d) yields

$$
W^{\prime}=X_{21}^{(0)} X_{14}^{(0)} X_{45}^{(0)} \Lambda_{52}^{(1)}+X_{26}^{(0)} \Lambda_{63}^{(1)} X_{32}^{(0)}
$$

$$
+\Lambda_{52}^{(1)} X_{26}^{(0)} X_{65}^{(0)}+X_{53}^{(0)} \Lambda_{36}^{(1)} X_{65}^{(0)}+\Lambda_{25}^{(1)} X_{53}^{(0)} X_{32}^{(0)}
$$

(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 and want new potential to match new quadrangulation

$W=\Lambda_{63}^{(1)} X_{32}^{(0)} X_{26}^{(0)}$

$$
+\Lambda_{54}^{(1)} X_{43}^{(0)} X_{35}^{(0)}
$$

(Franco-M 2017) Potentials for Colored Quivers

Example (m=2): Mutating at Vertex 3 via Rules (2a), (2b), (2c), (2d)

$$
W=\Lambda_{63}^{(1)} X_{32}^{(0)} X_{26}^{(0)}+\Lambda_{54}^{(1)} X_{43}^{(0)} X_{35}^{(0)}
$$

$$
W^{\prime}=X_{63}^{(0)} \Lambda_{32}^{(1)} X_{26}^{(0)}+\Lambda_{54}^{(1)} X_{45}^{(0)}+\Lambda_{64}^{(1)} X_{42}^{(0)} X_{26}^{(0)}
$$

$$
+X_{45}^{(0)} \Lambda_{53}^{(1)} X_{34}^{(0)}+\Lambda_{46}^{(1)} X_{63}^{(0)} X_{34}^{(0)}+X_{42}^{(0)} \Lambda_{23}^{(1)} X_{34}^{(0)}
$$

(Franco-M 2017) Potentials for Colored Quivers

Example ($\mathbf{m}=\mathbf{2}$): Mutating at Vertex 3 and reducing massive terms

(0)

(0)

$$
W^{\prime}=X_{63}^{(0)} \Lambda_{32}^{(1)} X_{26}^{(0)}+\Lambda_{54}^{(1)} X_{45}^{(0)}+\Lambda_{64}^{(1)} X_{42}^{(0)} X_{26}^{(0)}
$$

$$
+X_{45}^{(0)} \Lambda_{53}^{(1)} X_{34}^{(0)}+\Lambda_{46}^{(1)} X_{63}^{(0)} X_{34}^{(0)}+X_{42}^{(0)} \Lambda_{23}^{(1)} X_{34}^{(0)}
$$

$$
W_{r e d}^{\prime}=X_{63}^{(0)} \Lambda_{32}^{(1)} X_{26}^{(0)}+\Lambda_{64}^{(1)} X_{42}^{(0)} X_{26}^{(0)}+\Lambda_{46}^{(1)} X_{63}^{(0)} X_{34}^{(0)}+X_{42}^{(0)} \Lambda_{23}^{(1)} X_{34}^{(0)}
$$

DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann's work (thanks to AI Garver), we were able to prove the above four rules are sufficient assuming conjectural rule for reduction of massive terms.

DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann's work (thanks to AI Garver), we were able to prove the above four rules are sufficient assuming conjectural rule for reduction of massive terms.

Oppermann uses Higher Ginzburg algebras can be associated to a (Colored) Quiver by defining $d: k \bar{Q} \rightarrow k \bar{Q}$ by

$$
d(\alpha)=\left\{\begin{array}{l}
0 \text { if } \alpha \text { has degree (i.e. color) }(0) \\
\partial_{\alpha^{o p}} W \text { if } \alpha \text { has degree (i.e. color) } \in\{1,2,3, \ldots, m\} \\
e_{i}\left(\sum_{\alpha}\left[\alpha, \alpha_{o p}\right]\right) e_{i} \text { if } \alpha=\ell_{i}, \text { a loop of degree }(m+1)
\end{array} .\right.
$$

DG Structures (Ginzburg 2006, Van den Bergh 2015)

Once we learned of Steffen Oppermann's work (thanks to AI Garver), we were able to prove the above four rules are sufficient assuming conjectural rule for reduction of massive terms.

Oppermann uses Higher Ginzburg algebras can be associated to a (Colored) Quiver by defining $d: k \bar{Q} \rightarrow k \bar{Q}$ by

$$
d(\alpha)=\left\{\begin{array}{l}
0 \text { if } \alpha \text { has degree (i.e. color) }(0) \\
\partial_{\alpha^{o p}} W \text { if } \alpha \text { has degree (i.e. color) } \in\{1,2,3, \ldots, m\} \\
e_{i}\left(\sum_{\alpha}\left[\alpha, \alpha_{o p}\right]\right) e_{i} \text { if } \alpha=\ell_{i}, \text { a loop of degree }(m+1)
\end{array} .\right.
$$

For a potential W such that the Kontsevich bracket vanishes, i.e. $\{W, W\}=0$, the Vacuum Moduli Space agrees with the Jacobian algebra, given as

$$
k \bar{Q} /\left(\left\{\partial_{\alpha} W: \alpha \text { of color }(m-1)\right\}\right)=H^{0}\left(\widehat{\Gamma}_{m+2}(Q, W)\right)
$$

Mutations of DG Structures (Oppermann 2017)

In an effort to study "Quivers for Silting Mutation", Oppermann gives an algebraic description of how this differential graded structure mutates alongside the colored (a.k.a. graded) quiver mutation.

$$
W \rightarrow W^{\prime}=\operatorname{dec}_{\mathrm{cyc}} W+\underset{\alpha: \xrightarrow{(0)} j, \quad \sum^{(c)} j \xrightarrow{(c)} \alpha \operatorname{dec}\left(\varphi \varphi^{o p}\right) \alpha^{*} .}{ }
$$

Mutations of DG Structures (Oppermann 2017)

In an effort to study "Quivers for Silting Mutation", Oppermann gives an algebraic description of how this differential graded structure mutates alongside the colored (a.k.a. graded) quiver mutation.

$$
W \rightarrow W^{\prime}=\operatorname{dec}_{\mathrm{cyc}} W+\underset{\alpha: \xrightarrow{(0)} j, \quad \sum^{(c)} j \xrightarrow{(c)} \alpha \operatorname{dec}\left(\varphi \varphi^{o p}\right) \alpha^{*} .}{ }
$$

Such a compact expression is possible due to the functions dec and $\mathbf{d e c}_{\mathbf{c y c}}$, which are defined as an action on a cycle $\gamma=\varphi_{i_{1}, i_{2}} \varphi_{i_{2}, i_{3}} \cdots \varphi_{i_{\ell}, i_{1}}$ and then extended linearly to act on a potential.

Mutations of DG Structures (Oppermann 2017)

In an effort to study "Quivers for Silting Mutation", Oppermann gives an algebraic description of how this differential graded structure mutates alongside the colored (a.k.a. graded) quiver mutation.

$$
W \rightarrow W^{\prime}=\operatorname{dec}_{\mathrm{cyc}} W+\underset{\alpha: \xrightarrow{(0)} j, \quad \sum^{(c)} j \xrightarrow{(c)} \alpha \operatorname{dec}\left(\varphi \varphi^{o p}\right) \alpha^{*} .}{ }
$$

Such a compact expression is possible due to the functions dec and $\mathbf{d e c}_{\mathbf{c y c}}$, which are defined as an action on a cycle $\gamma=\varphi_{i_{1}, i_{2}} \varphi_{i_{2}, i_{3}} \cdots \varphi_{i_{\ell}, i_{1}}$ and then extended linearly to act on a potential.

Every 2-path $\varphi_{i, j} \varphi_{j, k}$ in γ is replaced with $\left(\varphi_{i, j} \varphi_{j, k}-\sum_{\alpha: \xrightarrow{(0)} j} \varphi_{i, j} \alpha^{-1} \alpha \varphi_{j, k}\right)$. The result is $\operatorname{dec}(\gamma)$.

Mutations of DG Structures (Oppermann 2017)

In an effort to study "Quivers for Silting Mutation", Oppermann gives an algebraic description of how this differential graded structure mutates alongside the colored (a.k.a. graded) quiver mutation.

$$
W \rightarrow W^{\prime}=\operatorname{dec}_{c y c} W+\sum_{\alpha: \xrightarrow{(0)} j, \varphi: j \xrightarrow{(c)}}
$$

Such a compact expression is possible due to the functions dec and $\mathbf{d e c}_{\mathbf{c y c}}$, which are defined as an action on a cycle $\gamma=\varphi_{i_{1}, i_{2}} \varphi_{i_{2}, i_{3}} \cdots \varphi_{i_{\ell}, i_{1}}$ and then extended linearly to act on a potential.

Every 2-path $\varphi_{i, j} \varphi_{j, k}$ in γ is replaced with $\left(\varphi_{i, j} \varphi_{j, k}-\sum_{\alpha: \xrightarrow{(0)} j} \varphi_{i, j} \alpha^{-1} \alpha \varphi_{j, k}\right)$. The result is $\operatorname{dec}(\gamma)$.
For the case of $\operatorname{dec}_{\text {cyc }}(\gamma)$, this operation is taken cyclically, i.e. we also consider 2-paths $\varphi_{i_{k}, i_{1}} \varphi_{i_{1}, i_{2}}$ where $i_{1}=j$.

Open Questions and Work in Progress

Work in Progress (with Emily Gunawan and Ana Garcia Elsener):

Assigning a potential to general $(m+2)$-angulations of a surface (in the spirt of Daniel Labardini-Fragoso for triangulations) so that this assignment rule is compatible with mutation and diagonal rotation in an $(m+2)$-gon. Can we better analyze certain gentle algebras and/or oriented flip graphs of AI Garver and Thomas McConville using the machinery of colored potentials?

Open Questions and Work in Progress

Work in Progress (with Emily Gunawan and Ana Garcia Elsener):

Assigning a potential to general $(m+2)$-angulations of a surface (in the spirt of Daniel Labardini-Fragoso for triangulations) so that this assignment rule is compatible with mutation and diagonal rotation in an ($m+2$)-gon. Can we better analyze certain gentle algebras and/or oriented flip graphs of AI Garver and Thomas McConville using the machinery of colored potentials?

Big Open Question: Is there an analogue of cluster variables for brane bricks $(m=2)$ or in the case of higher m. In the case of A_{n} colored quivers, such variables would correspond to admissible arcs in an $(m+2)$-gon. Or for toric colured quivers, correspond to brick regions of brane brick models (instead of faces of brane tilings). We know the analogue of colored quiver mutation and even colored potential mutation. But what are the analogues of the binomial exchange relations? Currently working with S. Franco, R. Kenyon, D. Speyer, and L. Williams on this and related questions.

Thank You!

http://www.math.umn.edu/~musiker/Higher19.pdf

Seiberg duality (1995)
(Seiberg) $\longleftrightarrow \quad \begin{gathered}\text { Quiver Mutation (2001) } \\ \text { (Fomin-Zelevinsky) }\end{gathered}$
(Seiberg)
(Fomin-Zelevinsky)
Zamolodchikov Periodicity (1991) \longleftrightarrow Y-system Periodicity (2003)
(Zamolodchikov) (Fomin-Zelevinsky)

Superpotentials \& Moduli Spaces (2002) \longleftrightarrow Quivers with Potentials (2007) (Berenstein-Douglas) (Derksen-Weyman-Zelevinsky)

Amplituhedron (2013) \longleftrightarrow Positive Grassmannian (2006) (Arkani-Hamed-Trnka) (Postnikov)

Brane Tilings \& Gauge Theories (2005) \longleftrightarrow Cluster Integrable Systems (2011) (Franco-Hanany-Kennaway-Vegh-Wecht) (Goncharov-Kenyon)

Brane Bricks \& Hyperbricks (2015-2016) \Longleftrightarrow Colored Quiver Mutation (2008) (Franco-Lee-Seong-Vafa) (Buan-Thomas)

Higher Calabi-Yau Quiver Theories (2017) \Longleftrightarrow Quivers for Silting Mutation (2015)
(Franco-M, arXiv:1711.01270) (Oppermann)

