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What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001)

A cluster algebra A (of geometric type) is a subalgebra of
k(x1, . . . , xn, xn+1, . . . , xn+m) constructed cluster by cluster by certain
exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx
′
α =

∏
x
d+
i
γi +

∏
x
d−
i
γi .

The set of all such generators are known as Cluster Variables, and the
initial pattern B of exchange relations determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.
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Teichmüller and Decorated Teichmüller Spaces

Let S = Sn
g be a smooth oriented surface (possibly with boundary) of

genus g equipped with a collection of marked points p1, p2, . . . , pn.

Here n ≥ 0. The marked points either lie on boundary components, or in
the interior of S , in which case they are called punctures.

Roughly speaking, the Teichmüller space of such a surface is

T (S) = the set of hyperbolic structures on S/isotopy.

Definition

Define the Teichmüller space of S to be the quotient space

T (S) = Hom (π1(S),PSL(2,R))
/

PSL(2,R).

Definition (Penner)

When n > 0, any such surface S = Sn
g also admits a decorated Teichmüller

space, which is a trivial Rn
>0-bundle over T (S), denoted T̃ (S).

G. Musiker (University of Minnesota) Super Double Dimers November 2, 2021 3 / 57



Decorated Teichmüller Theory

Throughou most of the rest of the talk, let S = Sn
0 be a disk with n

marked points on its unique boundary (i.e. a polygon). Such surfaces
admit the Poincaré disk D model as a hyperbolic structure.

D := {z = x + yi ∈ C : |z | < 1}, with metric ds = 2

√
dx2+dy2

1−|z|2 .

Definition (λ-length via horocycles)

h1

h2
δ

A horocycle is a smooth curve in the hyperbolic
plane with constant geodesic curvature 1. In D, it is
a Euclidean circle tangent to an infinite point, which
is the center.

For a pair of horocycles h1, h2, the λ-length between
them is

λ(h1, h2) = eδ/2

where δ is the hyperbolic distance between the two
intersections.
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Ptolemy Relations

Given a quadruple of horocycles with distinct centers (a decorated ideal
quadrilateral), one has the Ptolemy transformation induced by flipping
the diagonal of the quadrilateral.

a b

cd

e

a b

cd

f

At the level of λ-lengths, this induces the identity

λ(e)λ(f ) = λ(a)λ(c) + λ(b)λ(d).

Note that we will often abbreviate this as ef = ac + bd .
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Structural Theorems for Cluster Algebras

Theorem (Fomin-Zelevinsky 2001, The Laurent Phenomenon)

For any cluster algebra defined by initial seed ({x1, x2, . . . , xn+m},B), all
cluster variables of A(B) are Laurent polynomials in {x1, x2, . . . , xn+m}

(with no coefficient xn+1, . . . , xn+m in the denominator).

Because of the Laurent Phenomenon, any cluster variable xα can be
expressed as Pα(x1,...,xn+m)

x
α1
1 ···x

αn
n

where Pα ∈ Z[x1, . . . , xn+m] and the αi ’s ∈ Z.

Theorem (Lee-Schiffler 2014, Gross-Hacking-Keel-Kontsevich 2015,
Prooof of the Positivity Conjecture)

For any cluster variable xα and any initial seed (i.e. initial cluster
{x1, . . . , xn+m} and initial exchange pattern B), the polynomial
Pα(x1, . . . , xn) has nonnegative integer coefficients.
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Cluster Algebras from Surfaces

Theorem (Fomin-Shapiro-Thurston 2006)

Given a Riemann surface with marked points (S ,M), one can define a
corresponding cluster algebra A(S ,M).

Seed ↔ Triangulation T = {τ1, τ2, . . . , τn}

Cluster Variable ↔ Arc γ (xi ↔ τi ∈ T )

Cluster Mutation (Binomial Exchange Relations) ↔ Flipping Diagonals.

(Based on earlier work of Gekhtman-Shapiro-Vainshtein and
Fock-Goncharov.)

From the perspective of hyperbolic geometry, Laurent expansions of
cluster variables may be expressed as λ-lengths of arcs, which can be
measured by choosing a point in Penner’s decorated Teichmüller space.
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Positivity of Cluster Algebras from Surfaces

Theorem (Schiffler 2006)

Let A be any cluster algebra of type An, i.e. with a seed Σ defined by a
triangulation T of an (n + 3)-gon.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of T-paths.

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

λ25 =
x23x15

x13
+

x12x34x15

x13x14
+

x12x45

x14
=

x23x14x15 + x12x34x15 + x12x13x45

x13x14
.

G. Musiker (University of Minnesota) Super Double Dimers November 2, 2021 8 / 57



Positivity of Cluster Algebras from Surfaces

Theorem (Schiffler-Thomas 2007, Schiffler 2008)

Let A(S ,M) be any cluster algebra arising from an unpunctured surface S
with marked points M, with principal coefficients, and let Σ be any initial
seed. Here Σ correponds to a triangulation of S with respect to the
marked points M.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of T-paths.

x1 2x

x
3

x2

x4

x3

1

τ3

τ4

τ

ττ τ
8 5 7τ6

γ

τ2
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Positivity of Cluster Algebras from Surfaces

Theorem (M-Schiffler 2008)

Let A(S ,M) be any cluster algebra arising from an unpunctured surface,
with principal coefficients, and let Σ be any initial seed.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of snake graphs.

1

τ3

τ4

τ

ττ τ
8 5 7τ6

γ

τ2

2

1 2 3

4

1
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Positivity of Cluster Algebras from Surfaces

Theorem (M-Schiffler-Williams 2009)

Let A(S ,M) be any cluster algebra arising from a surface (with or without
punctures), where the coefficient system is of geometric type, and let Σ be
any initial seed.

Then the Laurent expansion of every cluster variable with respect to the
seed Σ has non-negative coefficients.

Proof via explicit combinatorial formulas in terms of snake graphs.
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Superalgebras (and towards Superspace)

A super algebra is a Z2-graded algebra.

i.e. A = A0 ⊕ A1, (the “even” and “odd” parts) and

AiAj ⊆ Ai+j for i , j ∈ {0, 1} mod 2

The algebra A generated by x1, · · · , xn, θ1, · · · , θm, subject to the
following relations

xixj = xjxi xiθj = θjxi θiθj = −θjθi
is a superalgebra. In particular θ2

i = 0.

Here A0 is spanned by monomials with an even number of θ’s and A1 is
spanned by monomials with an odd number of θ’s.

E.g. x1x2 + x1θ1θ3 + x2θ1θ2θ3θ4 ∈ A0, x1θ1θ2θ3 + x1x4θ2 + θ4 ∈ A1
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Decorated Super-Teichmüller Spaces [PZ19]

By replacing PSL(2,R) with OSp(1|2), Penner and Zeitlin
define the super-Teichmüller space of a surface S to be

ST (S) = Hom(π1(S),OSp(1|2))/OSp(1|2)

Similar to the bosonic case, the decorated space is encoded by a
collection of horocycles centered at each ideal point, which leads to
the definition of super λ-length.

But unlike the bosonic case, we need additional invariants to
accommodate for the extra degree of freedom coming from the odd
dimension.

They associate an odd variable to each triangle (triple of ideal
points), and call them the µ-invariants.
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Spin Structures

Components of ST (S) are indexed by the set of spin structures on S .

Cimasoni-Reshetikhin formulated the set of spin structures of S in terms of
the set of isomorphism classes of Kasteleyn orientations of a fatgraph
spine of S .

Dual to this formulation, we consider the set of spin structures on S to be
the set of equivalence classes of orientations on triangulations of S of the
following equivalence relation.

εa

εbεc θ ∼

−εa

−εb−εc −θ

where εa, εb, εc are orientations on the edges, and θ is the µ-invariant
associated to the triangle.
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Super Ptolemy Relation [PZ19]

The Ptolemy transformation on super λ-length coordinates is given as
follows.

a b

cd

e

θ

σ

a b

cd

f

θ′ σ′

ef = (ac + bd)

(
1 +

σθ
√
χ

1 + χ

)
, χ =

ac

bd

σ′ =
σ −√χθ
√

1 + χ
and θ′ =

θ +
√
χσ

√
1 + χ
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Super Ptolemy Relation [PZ19]

The Ptolemy transformation on super λ-length coordinates is given as
follows.

a b

cd

e

θ

σ

a b

cd

f

θ′ σ′

ef = ac + bd +
√
abcd σθ

σ′ =
σ
√
bd − θ

√
ac√

ac + bd
and θ′ =

θ
√
bd + σ

√
ac√

ac + bd

σθ = σ′θ′
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Super Ptolemy Relation [PZ19]

Super-flip also reverses the orientation of the edge b.

εa εb

εcεd

θ

σ

εa −εb

εcεd

θ′ σ′

Remark

Super Ptolemy moves are not involutions: µ8
i = I .

The even-degree-0 terms of a super λ-length are exactly the
(ordinary) λ-length in the bosonic decorated space.
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Super Ptolemy Relation [PZ19]

If we flip a diagonal twice

εa εb

εcεd

θ

σ

εa −εb

εcεd

θ′ σ′

−εa −εb

εcεd

−θ

σ

the orientations of the triangle θ are reversed and θ is changed to −θ.

θ

−

− −
−θ

This orientation is equivalent to the original one, i.e. both the first and
third pictures represent the same spin structure.
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Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e

x1 x2
θ1

θ2

θ3

Start with a Pentagon with given
orientation.

The boundary orientations are ignored,
because they are irrelevant in the
calculations.

What are λ24, λ25, and λ35?

We first flip the edge x1.
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Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e

x3 x2

θ4

θ5

θ3

After flipping x1 to x3, we get:

x3 =
ad + ex2

x1
+

√
adex2

x1
θ1θ2

θ4 =

√
ad θ1 −

√
ex2 θ2√

x1x3

θ5 =

√
ad θ2 +

√
ex2 θ1√

x1x3

Here the red color indicates that the orientation
on the boundary edge has been reversed.

Next we flip x2.
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Super Ptolemy Relation - Example

1

2

3 4

5

a b

c

d

e

x3

x4

θ4

θ7

θ6

After flipping x2 to x4, we have:

x4 =
ac + bx3

x2
+

√
acbx3

x2
θ5θ3

x4 =
acx1 + abd + bex2

x1x2
+

b
√
adex2

x1x2
θ1θ2+

x4 =

√
acb

(
ad+ex2

x1
+

√
adex2

x1
θ1θ2

)
x2

(√
ad θ2 +

√
ex2 θ1√

x1x3

)
θ3

x4 =
acx1

x1x2
+

abd

x1x2
+

bex2

x1x2
+

b
√
ade

x1
√
x2
θ1θ2+

x4 =
a
√
bcd

√
x1x2

θ2θ3 +

√
abce
√
x1x2

θ1θ3

Question: If we now flip x3 to x5, what do we
expect x5 to look like?
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Main Question

In a cluster algebra A, any cluster variable can be expressed as a positive
Laurent polynomial in the initial cluster, i.e.

A ⊂ R[x±1
1 , · · · , x±1

n ].

Questions

Does the super λ-length satisfy some Laurent phenomenon?

Is there a “positivity” for terms with anti-commuting variables?

Answers (Spoiler Alert)

Super λ-lengths live in R[x
± 1

2
1 , · · · , x±

1
2

1 |θ1, · · · , θn+1].

There exists an ordering on the odd variables, called positive ordering,
such that if we multiply θ’s in the positive ordering then the
coefficients are positive.
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Super Ptolemy Relation - Example Continued

1

2

3 4

5

a b

c

d

e

x3

x4

θ4

θ7

θ6

1

2

3 4

5

a b

c

d

e θ8

x4

x5

θ9

θ6

Before giving the general answer, we illustrate
the result of flipping x3 to x5: We first recall

that θ4 =

√
ad θ1 −

√
ex2 θ2√

x1x3
and note that

θ7 =

√
ac θ5 −

√
bx3 θ3√

x2x4
=

1
√
cx3x4

(
c

√
ae

x1
θ1 +ac

√
d

x1x2
θ2−x3

√
bc

x2
θ3

)
.

We then proceed to obtain

x5 =
ce + dx4

x3
+

√
cdex4

x3
θ4θ7 = · · · =

bd + cx1

x2
+

√
bcdx1

x2
θ2θ3.

Continuing with super-flips of x4 and x5, in
order, yields x1 and x2, respectively.
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Schiffler’s T -paths [Sch08]

Let T be a triangulation of a polygon, thought of as a graph of vertices
and edges.

A T -path from i to j is a path in T starting at vertex i , ending at j , such
that

(T1) the path does not use any edge twice

(T2) the path has an odd number of edges

(T3) the even-numbered edges cross the diagonal (i , j)

(T4) The intersections of the path and (i , j) move from progressively i to j .

Let Tij denote the set of T -paths from i to j .

For a T -path γ = (x1, x2, · · · ), define it’s weight to be

wt(γ) =
∏
i odd

λ(xi )
∏
i even

λ(xi )
−1

where λ(xi ) denote the λ-length of the edge xi .
G. Musiker (University of Minnesota) Super Double Dimers November 2, 2021 24 / 57



Schiffler’s T -paths [Sch08]

Theorem (Schiffler)

λ(xi ,j) =
∑
t∈Ti,j

wt(t)

Here are the T -paths in T25. (odd steps are blue and even steps are red)

1

2

3 4

5

x23x15
x13

1

2

3 4

5

x12x34x15
x13x14

1

2

3 4

5

x12x45
x14

λ(x2,5) =
∑
t∈T25

wt(t) =
x23x15

x13
+

x12x34x15

x13x14
+

x12x45

x14
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First Result: Super T -paths and Twisted Super T -paths
https://arxiv.org/pdf/2102.09143.pdf and https://arxiv.org/pdf/2110.06497.pdf

From now on we only consider triangulations with a longest arc crossing all
internal diagonals.

In other words, every triangle has a boundary edge. Call the end points of
the longest arc a and b.

a

b
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Fan Decomposition

a

b

c2

c4

c1

c3

For a triangulation T , we will define a canonical
fan decomposition.

The arc (a, b) intersect with internal diagonals,
and create smaller triangles (colored yellow).

Vertices of these yellow triangles are called fan
centers, denoted c1, · · · , cn, ordered by their
distance from a. And we further denote a = c0

and b = cn+1.

The sub-triangulation bounded by ci−1, ci , ci+1 is
called the i-th fan segment of T .
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Default Orientation and Positive Ordering

c0

c2

c4 c5

c3

c1

α1
α2

α3

β1

β2

γ1

γ2

γ3

δ1

δ2

We define a default orientation on the interior
diagonals.

Edges inside each fan segment are directed
away from the center.

Others are oriented as c1 → c2 → · · · → cn.

We define a positive ordering on µ-invariants.

µ-invariants in a fan are ordered
counterclockwise around the center.

“Alternate” across the fans.

α1 > α2 > α3 > γ1 > γ2 > γ3 > δ2 > δ1 > β2 > β1
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The Twisted Auxiliary Graph

a = c0

c2

c4 c5 = b

c3

c1

For each triangle in T , we place an internal
vertex.

The internal vertices are connected to the
complement of the nearest fan centers by two
σ-edges, with one closer to the starting vertex a
while the other is closer to the ending vertex b.

We color the former in thick blue and call it a
σA-edge and color the latter in cyan and call it a
σB -edge.

Every pair of internal vertices are connected by a
teleportation, called a τ -edge. (Note that the
τ -edges are drawn to be overlapping.)

The resulting graph Γa,b
T is the twisted auxiliary

graph associated to {T , a, b}.
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Twisted Super T -paths

Finally, we define twisted super T -paths to be paths on the twisted
auxiliary graph such that:

(T1) a = a0, a1, · · · , a`(t) = b are vertices on Γa,b
T .

(T2) For each 1 ≤ i ≤ `(t), ti is an edge in Γa,b
T connecting ai−1 and ai .

(T3) ti 6= tj if i 6= j .

(T4) `(t) is odd.

(T5’) ti crosses (a, b) if i is even. The τ -edges (teleporation) are considered
to cross (a, b), and any step along a τ -edge must end further from
endpoint a and closer to endpoint b.

(T6’) ti ∈ σ only if i is odd, ti ∈ τ only if i is even.

(T7) If i < j and both ti and tj cross the arc (a, b), then the intersection
ti ∩ (a, b) is closer to the vertex a than the intersection tj ∩ (a, b).

Let T̃a,b denote the set of twisted super T -paths on Γa,b
T .

Every ordinary T -path is also a twisted super T -path: Ta,b ⊂ T̃a,b
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Weights of Twisted Super T -paths

If a super T -path uses edges t1, t2, . . . , we define its weight as follows.

If ti is a diagonal in the triangulation, then:
wt(ti ) = λ(ti ) if i odd, and
wt(ti ) = λ(ti )

−1 if t is even.

If ti is a τ -edge, then wt(ti ) = 1 (teleportation)

If ti is a σ-edge, then wt(ti ) =
√

xy
z θ. Here x , y , z are λ-lengths and

θ is the µ-invariant.

θ
ti yx

z

If t is a twisted super T -path with edges t1, t2, . . . , set wt(t) =
∏

i wt(ti ).
Here the product is taken under the positive ordering.
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First Theorem: Formula for Super λ-lengths

Theorem (M-Ovenhouse-Zhang 2021)

Under default orientation, the super λ-length of the arc (a, b) (assuming
to be the longest arc in T ) is given by (twisted) super T -paths:

λ(a, b) =
∑

t∈T̃a,b

wt(t)

With the following lemma, we can apply the main theorem for
triangulations with arbitrary orientation.

Lemma ( [MOZ21] )

In the equivalence class of any spin structure, there exists (at least) one
default orientation. (In other words, up to possibly negating boundary
edges, or negating a µ-invariant and its three incident edges, we can
transform any orientation on T into the default orientation.)
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Twisted Super T -paths and their Weights: Examples

x1

x2

x3

x4

x5

x6

x9

x8

x7

θ4
θ3

θ2

θ1

x5
√
x1x2x3x8

x7x9
θ4θ3

x4x6
√
x1x2x3

x7x9
√
x8

θ4θ3

x4
√
x1x2x6√
x7x8x9

θ2θ4
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Twisted Super T -paths and their Weights: Examples II

x1

x2

x3

x4

x5

x6

x9

x8

x7

θ4
θ3

θ2

θ1

√
x1x2x4x5√
x7x9

θ1θ4

x1x4
√
x3x6

x8
√
x7x9

θ2θ3

x1
√
x3x4x5√
x7x8x9

θ1θ3
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Twisted Super T -paths and their Weights: Examples III

x1

x2

x3

x4

x5

x6

x9

x8

x7

θ4
θ3

θ2

θ1

x1x3
√
x4x5x6

x7x9
√
x8

θ1θ2

x2
√
x4x5x6x8

x7x9
θ1θ2

√
x1x2x3x4x5x6

x7x9
θ1θ2θ4θ3
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Recent Work: A Second Combinatorial Interpretation

A snake graph is a planar graph consisting of a sequence of square tiles,
each connected to either the top or right side of the previous tile.

Given a snake graph G , the word of G , denoted W (G ), is a string in the
alphabet {R,U} (standing for “right” and “up”) indicating how each tile is
connected to the previous.

W (G ) = ∅ W (G ) = RR W (G ) = UR W (G ) = RUR
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Recent Work: A Second Combinatorial Interpretation

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2

θ3

θ4

θ5 θ6

y1
y2

y3

y4

W (G ) = RRUR

θ1

θ2

θ2

θ3
y1

θ3

θ4
y2

θ4

θ5

y3 θ5

θ6
y4

We built the snake graph from this triangulation traversing the dashed line
from bottom-to-top, gluing tiles together based on boundary edges shared
by adjacent quadrilaterals.
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Recent Work: A Second Combinatorial Interpretation

Every square tile in a snake graph represents two triangles in the
triangulation. We label tiles with the odd variables of those triangles.

θ1

θ2

θ2

θ3

θ3

θ4

θ4

θ5

θ5

θ6

x

y

za

b c

d

ef

weight = xyz
√
abcdef θ1θ3

A double dimer cover of a graph is the union of two dimer covers. It is
composed of cycles and doubled edges.

Dimers will be drawn as wavy orange lines, and double dimers will be
drawn as straight blue lines.

The weight of a double dimer cover is the product of the square roots of
the edge weights, times the odd variables at the beginning and end of
cycles.
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Recent Work: A Second Combinatorial Interpretation

Theorem (M-Ovenhouse-Zhang 2021)

Consider a triangulation where f is the longest edge, we follow the
construction of [MSW11] to build the snake graph G corresponding to the
arc f . Then the super λ-length for f is given as follows:

1
cross(f )

∑
M∈DD(G) wt(M) where DD(G ) is the set of double-dimers on G .

Here, cross(f ) denotes the monomial given by the product of the edges
crossed by the arc f , and wt decomposes into an even and odd part,
wt = wtxwtθ.

The value of wtx is the product of the weights of the edges in M with
multiplicity, but the weight of each individual edge is given by a
square-root.

Additionally each cycle around tiles appearing in M contributes a weight of
θiθj to wtθ, where θi and θj label the first and last triangles of that cycle
in G , respectively.
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Recent Work: A Second Combinatorial Interpretation

1

2

3 4

5

a b

c

d

e

x1 x2
θ1

θ2

θ3

Recall λ2,5 =
acx1

x1x2
+

abd

x1x2
+

bex2

x1x2
+

x4 =
b
√
ade

x1
√
x2
θ1θ2 +

a
√
bcd

√
x1x2

θ2θ3 +

√
abce
√
x1x2

θ1θ3

23

12

14

34

13

15

45

acx1
x1x2

23

12

14

34

13

15

45

abd
x1x2

23

12

14

34

13

15

45

bex2
x1x2
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Recent Work: A Second Combinatorial Interpretation

1

2

3 4

5

a b

c

d

e

x1 x2
θ1

θ2

θ3

Recall λ2,5 =
acx1

x1x2
+

abd

x1x2
+

bex2

x1x2
+

x4 =
b
√
ade

x1
√
x2
θ1θ2 +

a
√
bcd

√
x1x2

θ2θ3 +

√
abce
√
x1x2

θ1θ3

23

12

14

34

13

15

45

θ1

θ2

b
√
adex2
x1x2

θ1θ2

23

12

14

34

13

15

45

θ2

θ3

a
√
bcdx1
x1x2

θ2θ3

23

12

14

34

13

15

45

θ1

θ2

θ2

θ3

√
abcex1x2
x1x2

θ1θ3
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What about odd variables?

Consider an arc γ as before.

Let ϕ be a triangle with γ as a side,
and also a boundary side.

Can we express the µ-invariant θϕ in
terms of the initial triangulation?

ϕ
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The Toggle Involution

Recall that snake graphs are labelled with odd variables.

θ1

θ2

θ2

θ3

θ3

θ4

θ4

θ5

θ5

θ6

If θn is the label on the upper-right of the last tile, define an involution
x 7→ x∗ on monomials which adds/removes θn.

Examples:
(θ1θ2)∗ = θ1θ2θ6, (θ4θ6)∗ = θ4
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Formula for Odd Variables

ϕ
f

d

e

b

Theorem [M-Ovenhouse-Zhang 2021]

√
df θϕ =

1

cross(f )

√
e√
b

∑
M∈Dt(Gf )

wt(M)∗

where Dt is the set of double dimer covers using the top edge of the last
tile (as long as the polygon has an odd number of triangles; otherwise use
the right edge on the last tile instead).
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Example of µ-invariant Formula

a

e

d

c

b

x y
θ1 θ2 θ3

γ

ϕ

e

a

y

d

x

b

c

θ1

θ2

θ2

θ3

Dt(G ) :

∑
M∈Dt(G)

wt(M) = acx +a
√
bcdx θ2θ3+

√
abcexy θ1θ3∑

M∈Dt(G)

wt(M)∗ = acx θ3 + a
√
bcdx θ2 +

√
abcexy θ1

√
y√
c

∑
M∈Dt(G)

wt(M)∗ = ax
√
cy θ3 + a

√
bdxy θ2 + y

√
abex θ1

√
aγ θϕ =

1

xy

(
ax
√
cy θ3 + a

√
bdxy θ2 + y

√
abex θ1

)
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The Proof

Looking at the top-right corner of the last tile of G = Gf , there are 3
cases:

So we have DD(G ) = DT (G ) ∪ DR(G ) ∪ Dtr (G ).
The super Ptolemy relation also has 3 terms:

f =
1

e

(
ac + bd +

√
abcd σθ

)
The strategy of the proof is to show that

ac

e
=

∑
M∈DT (G)

wt(M)

bd

e
=

∑
M∈DR(G)

wt(M)

√
abcd

e
σθ =

∑
M∈Dtr (G)

wt(M)
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The Proof

The details involve induction on the number of tiles in the snake graph
(equivalently, the number of triangles in the polygon).

However, since the formula for super λ-lengths involves µ-invariants, we
must inductively prove the super λ-length formula and µ-invariant formula
simultaneously.

The induction steps themselves are proven using recursion formulas that
are combinatorially satisfied by the set of double dimers.

Example of Mapping Dr (G (−1)) into Dtr (G ):

· · ·

a

b

c

d

θn

θn−1

θn−1

· · ·

a

b

c

d

θn

θn−1

θn−1

· · ·

a

b

c

d

θn

θn−1

θn−1

· · ·

a

b

c

d

θn

θn−1

θn−1
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Lattice Structure in Dimer Case

1 3

1 3

1 2 3

Superimpose the minimal dimer cover (but do not draw doubled edges) to
see this is isomorphic to a lattice of subsets ordered under inclusion.
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Lattice Structure in Dimer Case

Lattice isomorphism

There is a poset isomorphism L(G ) ∼= J(P(G )), between the set of dimer
covers on G and the lattice of lower order ideals in P(G ), the fence poset
corresponding to the snake graph G .
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Application: Lattice Structure in Double Dimer Case

1 3

1 1 3 3

1 3 1 2 3 31

1 2 3 1 3 1 2 3

1 2 3

1 2 3
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Application: Lattice Structure in Double Dimer Case

Theorem

There is a poset isomorphism L(G ) ∼= J(P(G )), between double dimer
covers on G and lower order ideals in P(G ) := P(G )× {0, 1}.
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Application: Super Fibonacci Numbers

Given a triangulation of an annulus, we consider the periodic mutation
sequence a, b, a, b, a, b, . . . in the universal cover.

b

a

σ θ

θ

σ

θ

σ

θ

σ
· · · · · ·b

a
b

a
b

a
b

+ + +

+ + +

θ′

σ′

θ′

σ′

θ′

σ′

· · · · · ·b
a′

b
a′

b
a′

b

− − −

+ + +

θ′′

σ′′

θ′′

σ′′

θ′′

σ′′
· · · · · ·b′

a′
b′

a′
b′

a′
b′

− − −

− − −

θ′′

σ′′

Since σθ = σ′θ′ = σ′′θ′′ = . . . , if we let ε = σθ, the Super Ptolemy
Relation will always have the form ef = a2 + b2 + abε. Thus letting
Z1 = a, Z2 = b, we get the recurrence ZmZm−2 = Z 2

m−1 + Zm−1ε+ 1 for
the resulting infinite sequence of super λ-lengths.
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Application: Super Fibonacci Numbers

Letting Gm denote the snake graph for the word W (G ) = RR . . .R, i.e.
with m tiles in a horizontal row, where all edges have weight 1, and all
tiles alternate between the same two µ-invariants σ and θ

· · ·
σ

θ

θ

σ

σ

θ

we obtain that the Zm’s are the double dimer partition functions for the
snake graphs G2m−5.

Further, when we initialize Z1 = a = 1 and Z2 = b = 1, we get for m ≥ 3

Zm = F2m−3 +

(
m−3∑
k=0

(2k + 1)

(
m + k − 1

2k + 2

))
ε,

where Fk is the kth Fibonacci number such that F1 = F2 = 1.

G. Musiker (University of Minnesota) Super Double Dimers November 2, 2021 53 / 57



Application: Super Fibonacci Numbers

Further, when we initialize Z1 = a = 1 and Z2 = b = 1, we get for m ≥ 3

Zm = F2m−3 +

(
m−3∑
k=0

(2k + 1)

(
m + k − 1

2k + 2

))
ε,

where Fk is the kth Fibonacci number such that F1 = F2 = 1.

We also can let Wm = F2m−2 +
(∑m−3

k=0 (2k)
(m+k−2

2k+1

))
ε, which is the

double dimer partition function for G2m−4.

Examples: https://oeis.org/A054454

Z3 = 2 + ε
W3 = 3 + 2ε
Z4 = 5 + 6ε
W4 = 8 + 12ε
Z5 = 13 + 26ε
W5 = 21 + 50ε
Z6 = 34 + 97ε
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Open Problems

Conjecture

If we let W1 = W2 = 1 (or if we let W1 = a and W2 = b), and set Wm to
be the double dimer partition function of G2m−4, then Wm corresponds to
the super λ-lengths of a peripheral arc in an annulus, except in the context
of the decorated super-Teichmüller space.

Question

Begin with an oriented triangulation of the once-punctured torus, and
allow flips in all three directions. The resulting super λ-lengths of such
arcs correspond to super analogues of the Markoff numbers satisfying

x2 + y2 + z2 + (xy + yz + xz)ε = 3(1 + ε)xyz .

Do they have combinatorial interpretations using double dimer covers of
the snake graphs appearing in Section 7 of [Propp 2005] in the presence of
appropriately specialized µ-invariants?
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Open Problems

Question

Does using double dimer covers on snake graphs rather than (twisted)
super T -paths allow us to combinatorially calculate super λ-lengths more
easily for other surfaces? Do we recover super analogues of skein relations
(rather than only when applying diagonal flips in a quadrilateral?

Thanks to the support of the NSF grants DMS-1745638 and
DMS-1854162, as well as the University of Minnesota UROP program.

http://www-users.math.umn.edu/∼musiker/IsaacNewton21.pdf
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Thank You for Listening!
https://arxiv.org/pdf/2110.06497.pdf
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