Beyond Aztec Dragons and Castles: Toric Cluster Variables for the dP3 Quiver

Tri Lai (IMA) and Gregg Musiker (University of Minnesota)

MIT Combinatorics Seminar

April 8, 2016

http://math.umn.edu/~musiker/MIT16.pdf

Lai-M (IMA and Univ. Minnesota)

Outline

- Introduction to Cluster Algebras
- Aztec Diamonds and Dragons
- Gale-Robinson Sequences and Pinecones
- Toric Mutations in an Infinite Mutation Type Cluster Algebra (dP_3)
- Ombinatorial Interpretation
- Sketch of the Proof

Thank you to NSF Grants DMS-1067183, DMS-1148634, DMS-1362980, and the Institute for Mathematics and its Applications.

Special Thanks to Jim Propp and the 2001 REACH Program.

http://math.umn.edu/~musiker/MIT16.pdf

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebra \mathcal{A} is a subalgebra of $k(x_1, \ldots, x_n)$ constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, $\{x_1, x_2, ..., x_n\}$. Construct the rest via Binomial Exchange Relations:

$$\mathbf{x}_{lpha}\mathbf{x}_{lpha}' = \prod \mathbf{x}_{\gamma_i}^{d_i^+} + \prod \mathbf{x}_{\gamma_i}^{d_i^-}.$$

The set of all such generators are known as Cluster Variables, and the initial pattern of exchange relations determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.

Quiver Mutation

We focus on cluster algebras whose initial pattern of exchange relations is determined by a quiver, i.e. a directed graph

$$x_j x_j' = \prod_{i \to j \in Q} x_i + \prod_{j \to i \in Q} x_i, \quad \left(i.e. \ x_j x_j' = \prod x_i^{d_i^+} + \prod x_i^{d_i^-}\right)$$

where d_i^+ is the number of arrows from vertex *i* to *j* and d_j^- is the number of arrow from vertex *j* to *i*.

Example: Mutating at vertex 2 yields $x'_2x_2 = x_1 + x_3$

Observe: we also mutate the quiver Q and obtain a new exchange pattern,

Quiver Mutation (at vertex j)

1st) Add an edge $i \rightarrow k$ for every 2-path $i \rightarrow j \rightarrow k$ in Q, the original quiver.

2nd) Reverse all arrows, i.e. directed edges, incident to vertex *j*.

3rd) Lastly, we erase all 2-cycles (that have been created by steps 1 and 2), and denote the resulting quiver as $\mu_j(Q)$.

Basic Example of a Cluster Algebra

Let A be the cluster algebra defined by the initial cluster $\{x_1, x_2, x_3\}$ and the initial exchange pattern

$$x_1x_1' = 1 + x_2, \ x_2x_2' = x_1x_3 + 1, \ x_3x_3' = 1 + x_2.$$

corresponding to the quiver

 \mathcal{A} is of finite type, type A_3 , generated by the cluster variables

$$\left\{ x_1, x_2, x_3, \frac{1+x_2}{x_1}, \frac{x_1x_3+1}{x_2}, \frac{1+x_2}{x_3}, \frac{x_1x_3+1+x_2}{x_1x_2}, \frac{x_1x_3+1+x_2}{x_1x_2}, \frac{x_1x_3+1+x_2+x_2+x_2^2}{x_2x_3}, \frac{x_1x_3+1+x_2+x_2+x_2^2}{x_1x_2x_3} \right\}.$$

Lai-M (IMA and Univ. Minnesota)

Kronecker Quiver, otherwise known as (Affine Type, of Type \widetilde{A}_1) or corresponding to an annulus with two marked points.

•
$$_1 \Longrightarrow \bullet_2$$
 yields $x_n x_{n-2} = x_{n-1}^2 + 1.$
 $x_3 = \frac{x_2^2 + 1}{x_1}.$

~

Kronecker Quiver, otherwise known as (Affine Type, of Type A_1) or corresponding to an annulus with two marked points.

•_1 \Longrightarrow •_2 yields $x_n x_{n-2} = x_{n-1}^2 + 1$. $x_3 = \frac{x_2^2 + 1}{x_1}$. $x_4 = \frac{x_3^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + 1 + x_1^2}{x_1^2 x_2}$.

Kronecker Quiver, otherwise known as (Affine Type, of Type \widetilde{A}_1) or corresponding to an annulus with two marked points.

 $\bullet_{1} \Longrightarrow \bullet_{2} \quad \text{yields} \quad x_{n}x_{n-2} = x_{n-1}^{2} + 1.$ $x_{3} = \frac{x_{2}^{2} + 1}{x_{1}}. \quad x_{4} = \frac{x_{3}^{2} + 1}{x_{2}} = \frac{x_{2}^{4} + 2x_{2}^{2} + 1 + x_{1}^{2}}{x_{1}^{2}x_{2}}.$ $x_{5} = \frac{x_{4}^{2} + 1}{x_{3}} = \frac{x_{2}^{6} + 3x_{2}^{4} + 3x_{2}^{2} + 1 + x_{1}^{4} + 2x_{1}^{2} + 2x_{1}^{2}x_{2}^{2}}{x_{1}^{3}x_{2}^{2}}, \dots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Kronecker Quiver, otherwise known as (Affine Type, of Type A_1) or corresponding to an annulus with two marked points.

 $\bullet_1 \Longrightarrow \bullet_2 \quad \text{yields} \quad x_n x_{n-2} = x_{n-1}^2 + 1.$ $x_3 = \frac{x_2^2 + 1}{x_1}. \quad x_4 = \frac{x_3^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + 1 + x_1^2}{x_1^2 x_2}.$ $x_5 = \frac{x_4^2 + 1}{x_3} = \frac{x_2^6 + 3x_2^4 + 3x_2^2 + 1 + x_1^4 + 2x_1^2 + 2x_1^2 x_2^2}{x_1^3 x_2^2}, \quad \dots$ If we let $x_1 = x_2 = 1$, we obtain $\{x_3, x_4, x_5, x_6\} = \{2, 5, 13, 34\}.$

Kronecker Quiver, otherwise known as (Affine Type, of Type \widetilde{A}_1) or corresponding to an annulus with two marked points.

 $\bullet_1 \Longrightarrow \bullet_2$ yields $x_n x_{n-2} = x_{n-1}^2 + 1.$ $x_3 = \frac{x_2^2 + 1}{x_1}, \ x_4 = \frac{x_3^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + 1 + x_1^2}{x_2^2 x_2}.$ $x_5 = \frac{x_4^2 + 1}{x_2} = \frac{x_2^6 + 3x_2^4 + 3x_2^2 + 1 + x_1^4 + 2x_1^2 + 2x_1^2x_2^2}{x_2^3x_2^2}, \dots$ If we let $x_1 = x_2 = 1$, we obtain $\{x_3, x_4, x_5, x_6\} = \{2, 5, 13, 34\}$. The next number in the sequence is $x_7 = \frac{34^2+1}{13} =$

Kronecker Quiver, otherwise known as (Affine Type, of Type \widetilde{A}_1) or corresponding to an annulus with two marked points.

 $\bullet_1 \Longrightarrow \bullet_2$ yields $x_n x_{n-2} = x_{n-1}^2 + 1.$ $x_3 = \frac{x_2^2 + 1}{x_1}, \ x_4 = \frac{x_3^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + 1 + x_1^2}{x_2^2 x_2}.$ $x_5 = \frac{x_4^2 + 1}{x_2} = \frac{x_2^6 + 3x_2^4 + 3x_2^2 + 1 + x_1^4 + 2x_1^2 + 2x_1^2x_2^2}{x_2^3x_2^2}, \dots$ If we let $x_1 = x_2 = 1$, we obtain $\{x_3, x_4, x_5, x_6\} = \{2, 5, 13, 34\}$. The next number in the sequence is $x_7 = \frac{34^2+1}{13} = \frac{1157}{13} =$

Kronecker Quiver, otherwise known as (Affine Type, of Type A_1) or corresponding to an annulus with two marked points.

 $\bullet_1 \Longrightarrow \bullet_2$ yields $x_n x_{n-2} = x_{n-1}^2 + 1.$ $x_3 = \frac{x_2^2 + 1}{x_1}, \ x_4 = \frac{x_3^2 + 1}{x_2} = \frac{x_2^4 + 2x_2^2 + 1 + x_1^2}{x_2^2 x_2}.$ $x_5 = \frac{x_4^2 + 1}{x_3} = \frac{x_2^6 + 3x_2^4 + 3x_2^2 + 1 + x_1^4 + 2x_1^2 + 2x_1^2x_2^2}{x_3^3 x_2^2}, \quad \dots$ If we let $x_1 = x_2 = 1$, we obtain $\{x_3, x_4, x_5, x_6\} = \{2, 5, 13, 34\}$. The next number in the sequence is $x_7 = \frac{34^2+1}{13} = \frac{1157}{13} = 89$, an integer! This is a example of a cluster algebra of finite mutation type.

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Finite, Finite Mutation, and Infinite Mutation Types

A cluster algebra is of finite type if the number of cluster variables and the number of quivers reachable via mutations is finite.

A cluster algebra is of finite mutation type if the number of quivers reachable via mutations is finite (but the number of cluster variables could be infinite).

A cluster algebra is of **infinite mutation type** if both the number of **cluster variables** and the number of **quivers** reachable via mutations is **infinite**.

Most cluster algebras of finite mutation type come from a surface (e.g. Kronecker quiver comes from an annulus).

We now shift our focus to cluster algebras of infinite mutation type.

イロト 不得 とうせい かほとう ほ

Consider the quiver Q (on the left below). Instead of all cluster variables, we focus on those obtained by mutating 1, 2, 3, 4, 1, 2, ... periodically:

Consider the quiver Q (on the left below). Instead of all cluster variables, we focus on those obtained by mutating 1, 2, 3, 4, 1, 2, ... periodically:

Yields a sequence of cluster variables, with initial cluster variables x_1, x_2, x_3, x_4 , with x_{n+4} denoting the *n*th new cluster variable obtained by this mutation sequence $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, \dots\}$.

Because of the periodicity, it follows that the x_n 's satisfy the recurrences

 $x_{n}x_{n-4} = \begin{cases} x_{n-1}^{2} + x_{n-2}^{2} & \text{when } n \text{ is odd, and} \\ x_{n-2}^{2} + x_{n-3}^{2} & \text{when } n \text{ is even.} \end{cases}$ For example, $x_{5} = \frac{x_{3}^{2} + x_{4}^{2}}{x_{1}}$, $x_{6} = \frac{x_{3}^{2} + x_{4}^{2}}{x_{2}}$, $x_{7} = \frac{x_{5}^{2} + x_{6}^{2}}{x_{3}}$, and $x_{8} = \frac{x_{5}^{2} + x_{6}^{2}}{x_{4}}$. Lai-M (IMA and Univ. Minnesota) Beyond Aztec Dragons and Castles April 8, 2016 9 / 66

Let $Q = \begin{pmatrix} & & \\$

$$x_{n}x_{n-4} = \begin{cases} x_{n-1}^{2} + x_{n-2}^{2} & \text{when } n \text{ is odd, and} \\ x_{n-2}^{2} + x_{n-3}^{2} & \text{when } n \text{ is even.} \end{cases}$$

By letting $x_1 = x_2$ and $x_3 = x_4$, we get $x_{2n+1} = x_{2n}$ for all n.

Letting $\{T_n\}$ be the sequence $\{x_{2n}\}_{n\in\mathbb{Z}}$, we obtain a single recurrence.

$$T_n T_{n-2} = 2T_{n-1}^2.$$

If
$$T_1 = T_2 = 1$$
, $\{T_n\} = \{1, 1, 2, 8, 64, 1024, 32768, \dots\} = \left\{2^{\frac{(n-1)(n-2)}{2}}\right\}.$

For $n \ge 3$, $T_n = \#$ (perfect matchings of the (n-2)nd Aztec Diamond).

April 8, 2016 11 / 66

The Gale-Robinson Sequence

Example ($Q_N^{(r,s)}$ **):** (e.g. r = 2, s = 3, N = 7)

Mutating at 1, 2, 3, ..., N, 1, 2, ... yields the same quiver, up to cyclic permutation, at each step, hence we obtain the infinite sequence of $x_{N+1}, x_{N+2}, ...$ satsifying

$$x_n = (x_{n-r}x_{n-N+r} + x_{n-s}x_{n-N+s})/x_{n-N}$$
 for $n > N$.

Known as the Gale-Robinson Sequence of Laurent polynomials.

FPSAC Proceedings 2013 (Jeong-M-Zhang)

FPSAC Proceedings 2013 (Jeong-M-Zhang)

Obtain **pinecone graphs** from Bousquet-Mélou, Propp, and West in terms of Brane Tilings Terminology.

Furthermore, to get cluster variable formulas with coefficients, need only use weights (Goncharov-Kenyon, Speyer) and heights (Kenyon-Propp-...)

FPSAC Proceedings 2013 (Jeong-M-Zhang)

Similar connections (without principal coefficients) also observed in "Brane tilings and non-commutative geometry" by Richard Eager.

Eager uses physics terminology where he looks at $Y^{p,q}$ and $L^{a,b,c}$ quiver gauge theories, and their periodic Seiberg duality (i.e. quiver mutations).

The Del Pezzo 3 Quiver and Aztec Dragons

Introduced by Jim Propp, Ben Wieland, and Mihai Ciucu. Studied further by Cottrell-Young.

 $\begin{aligned} x_{2n+7}x_{2n+1} &= x_{2n+3}x_{2n+5} + x_{2n+4}x_{2n+6} \text{ and} \\ x_{2n+8}x_{2n+2} &= x_{2n+3}x_{2n+5} + x_{2n+4}x_{2n+6} \cdot \text{ and} \end{aligned}$

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 16 / 66

Toric Mutations and Toric Phases of dP_3

Toric mutations take place at vertices with in-degree and out-degree 2.

Starting with any of these four models of the dP_3 quiver, any sequence of toric mutations yields a quiver that is graph isomorphic to one of these.

Figure 20 of Eager-Franco (Incidences betweeen these Models):

Goal: Combinatorial Formula for Toric Cluster Variables

Example from S. Zhang (2012 REU): Periodic mutation 1, 2, 3, 4, 5, 6, 1, 2, ... yields partition functions for Aztec Dragons (as studied by Ciucu, Cottrell-Young, and Propp) under appropriate weighted enumeration of perfect matchings.

イロト 不得 とうせい かほとう ほ

Goal: Combinatorial Formula for Toric Cluster Variables

Example from M. Leoni, S. Neel, and P. Turner (2013 REU): Mutations at antipodal vertices of dP_3 quiver yield τ -mutation sequences. Resulting Laurent polynomials correspond to Aztec Castles under appropriate weighted enumeration of perfect matchings.

e.g. 1, 2, 3, 4, 1, 2, 5, 6 yields cluster variable

$$\begin{array}{l} (x_1x_2^2x_3^3x_5^4 + x_2^3x_3^2x_4x_5^4 + 2x_1^2x_2x_3^3x_5^3x_6 + 4x_1x_2^2x_3^2x_4x_5^3x_6 + 2x_2^3x_3x_4^2x_5^3x_6 + x_1^3x_3^3x_5^2x_6^2 \\ + & 5x_1^2x_2x_3^2x_4x_5^2x_6^2 + 5x_1x_2^2x_3x_4^2x_5^2x_6^2 + x_2^3x_4^3x_5^2x_6^2 + 2x_1^3x_3^2x_4x_5x_6^3 + 4x_1^2x_2x_3x_4^2x_5x_6^3 \end{array}$$

 $+ \quad 2x_1x_2^2x_4^3x_5x_6^3 + x_1^3x_3x_4^2x_6^4 + x_1^2x_2x_4^3x_6^4)/x_1^2x_2^2x_3^2x_4^2x_6 = \frac{(x_1x_3 + x_2x_4)(x_4x_6 + x_3x_5)^2(x_1x_6 + x_2x_5)^2}{x_1^2x_2^2x_3^2x_4^2x_6}$

Segway: \mathbb{Z}^3 Parameterization for Toric Cluster Variables

Theorem 1 [Lai-M 2015] Starting from the initial cluster $\{x_1, x_2, \ldots, x_6\}$, the set of cluster variables reachable via toric mutations can be parameterized by \mathbb{Z}^3 .

Under this correspondence, the initial cluster bijects to

$$[(0, -1, 1), (0, -1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 0, 0)]$$

and toric mutations transform the six-tuple in \mathbb{Z}^3 as we will illustrate.

Up to symmetry, enough to consider $\mu_1\mu_2$, $\mu_1\mu_4\mu_1\mu_5\mu_1$, and $\mu_1\mu_4\mu_3$.

Mutating Model I to Model II and back to Model I

By applying $\mu_1 \circ \mu_2$, $\mu_3 \circ \mu_4$, or $\mu_5 \circ \mu_6$, we mutate the quiver (up to graph isomorphism):

Corresponding action in \mathbb{Z}^3 (on triangular prisms):

Illustrating the mutation sequence $\mu_1\mu_4\mu_1\mu_5\mu_1$

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 22 / 66

Illustrating the mutation sequence $\mu_1\mu_4\mu_3$

Segway: Algebraic Formula for Toric Cluster Variables

Let $A = \frac{x_3 x_5 + x_4 x_6}{x_1 x_2}$, $B = \frac{x_1 x_6 + x_2 x_5}{x_3 x_4}$, $C = \frac{x_1 x_3 + x_2 x_4}{x_5 x_6}$, $D = \frac{x_1 x_3 x_6 + x_2 x_3 x_5 + x_2 x_4 x_6}{x_1 x_4 x_5}$, and $E = \frac{x_2 x_4 x_5 + x_1 x_3 x_5 + x_1 x_4 x_6}{x_2 x_3 x_6}$. Let $z_i^{j,k}$ be the cluster variable corresponding to $(i, j, k) \in \mathbb{Z}^3$ Theorem 2 [Lai-M 2015] (Extension of [LMNT 2013] and [Lai 2014]): $z_i^{j,k} = x_r A^{\lfloor \frac{(i^2 + ij + j^2 + 1) + i + 2j}{3} \rfloor} B^{\lfloor \frac{(i^2 + ij + j^2 + 1) + 2i + j}{3} \rfloor} C^{\lfloor \frac{i^2 + ij + j^2 + 1}{3} \rfloor} D^{\lfloor \frac{(k-1)^2}{4} \rfloor} E^{\lfloor \frac{k^2}{4} \rfloor}$

where, working **modulo** 6, we have (cyclically around the dP_3 Quiver) r = 6 if $2(i - j) + 3k \equiv 0$, r = 4 if $2(i - j) + 3k \equiv 1$, r = 2 if $2(i - j) + 3k \equiv 2$, r = 5 if $2(i - j) + 3k \equiv 3$, r = 3 if $2(i - j) + 3k \equiv 4$, r = 1 if $2(i - j) + 3k \equiv 5$. i.e. we **determine** x_r by looking at (i - j) modulo 3 and k modulo 2.

Segway: Algebraic Formula for Toric Cluster Variables

Consequences:

(1) Every cluster variable reachable by toric mutations resides in a cluster

$$\left\{x_1\mathcal{A}_i^j\mathcal{D}^{k+1}, x_2\mathcal{A}_i^j\mathcal{D}^k, x_3\mathcal{A}_{i-1}^{j+1}\mathcal{D}^k, x_4\mathcal{A}_{i-1}^{j+1}\mathcal{D}^{k+1}, x_5\mathcal{A}_i^{j+1}\mathcal{D}^{k+1}, x_6\mathcal{A}_i^{j+1}\mathcal{D}^k\right\}$$

where
$$\mathcal{A}_{i}^{j} = A^{\lfloor \frac{(i^{2}+ij+j^{2}+1)+i+2j}{3} \rfloor} B^{\lfloor \frac{(i^{2}+ij+j^{2}+1)+2i+j}{3} \rfloor} C^{\lfloor \frac{i^{2}+ij+j^{2}+1}{3} \rfloor}$$
 and
 $\mathcal{D}^{k} = D^{\lfloor \frac{(k-1)^{2}}{4} \rfloor} E^{\lfloor \frac{k^{2}}{4} \rfloor}.$

(2) We have conserved quantities

$$\begin{aligned} A &= \frac{x_3x_5 + x_4x_6}{x_1x_2} = \frac{\mathcal{A}_{i-1}^{j+2} \mathcal{A}_i^j}{\mathcal{A}_{i-1}^{j+1} \mathcal{A}_i^{j+1}}, D = \frac{x_2^2 A + x_3x_6}{x_4x_5} = \frac{x_3^2 B + x_2x_6}{x_1x_5} = \frac{x_6^2 C + x_2x_3}{x_1x_4} = \frac{\mathcal{D}^{k+1}\mathcal{D}^{k-1}}{\mathcal{D}^k\mathcal{D}^k} \\ B &= \frac{x_2x_5 + x_1x_6}{x_3x_4} = \frac{\mathcal{A}_{i+1}^j \mathcal{A}_i^{j+1}}{\mathcal{A}_i^j \mathcal{A}_i^{j+1}}, E = \frac{x_1^2 A + x_4x_5}{x_3x_6} = \frac{x_4^2 B + x_1x_5}{x_2x_6} = \frac{x_5^2 C + x_1x_4}{x_2x_3} \text{ and} \\ C &= \frac{x_1x_3 + x_2x_4}{x_1x_2} = \frac{\mathcal{A}_{i-1}^j \mathcal{A}_i^{j+1}}{\mathcal{A}_i^j \mathcal{A}_{i-1}^{j+1}} & \text{coming from the cluster mutation relations} \end{aligned}$$

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 25 / 66

Segway: Algebraic Formula for Toric Cluster Variables

From work of Lai "A generalization of Aztec Dragons": Unweighted versions of these recurrences called type (R1), (R2), or (R4) recurrences.

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 26 / 66

Introducing Contours on the del Pezzo 3 Lattice

We wish to understand combinatorial interpretations for more general **toric** mutation sequences, not necessarily periodic or coming from mutating at antipodes.

To this end, we cut out subgraphs of the dP_3 lattice by using six-sided contours

indexed as (a, b, c, d, e, f) with $a, b, c, d, e, f \in \mathbb{Z}$.

Sign determines direction & Magnitude determines length

(1) $\mathcal{G}(3, 2, 4, 2, 3, 3)$, (2) $\mathcal{G}(3, -4, 2, 2, -3, 1)$, (3) $\mathcal{G}(3, -4, 4, 0, -1, 1)$, (4) $\mathcal{G}(5, -6, 3, 0, -1, -2)$, (5) $\mathcal{G}(5, -6, 2, 2, -3, -1)$, (6) $\mathcal{G}(2, 1, 1, -3, 6, -4)$

Turning a Contour C into the Subgraph $\mathcal{G}(C)$

1) Draw the contour C on top of the dP_3 lattice starting from a degree 6 white vertex.

2) For all sides of "positive" length, we erase all the **black** vertices.

3) For all sides of "negative" length, we erase all the white vertices.

For sides of "zero length" (between two sides of positive length), we erase the **white corner** or keep it depending on convexity.

4) After removing "dangling" edges and their incident faces, remaining subgraph inside contour is $\mathcal{G}(\mathcal{C})$.

Turning a Contour $\mathcal C$ into the Subgraph $\mathcal G(\mathcal C)$

1) Draw the contour C on top of the dP_3 lattice starting from a degree 6 white vertex.

2) For all sides of "positive" length, we erase all the **black** vertices.

3) For all sides of "negative" length, we erase all the white vertices.

For sides of "zero length" (between two sides of positive length), we erase the **white corner** or keep it depending on convexity.

4) After removing "dangling" edges and their incident faces, remaining subgraph inside contour is $\mathcal{G}(\mathcal{C})$.

Turning a Contour $\mathcal C$ into the Subgraph $\mathcal G(\mathcal C)$

1) Draw the contour C on top of the dP_3 lattice starting from a degree 6 white vertex.

2) For all sides of "positive" length, we erase all the **black** vertices.

3) For all sides of "negative" length, we erase all the white vertices.

For sides of "zero length" (between two sides of positive length), we erase the **white corner** or keep it depending on convexity.

4) After removing "dangling" edges and their incident faces, remaining subgraph inside contour is $\mathcal{G}(\mathcal{C})$.

Further Examples of Subgraphs $\mathcal{G}(\mathcal{C})$ from Contours \mathcal{C}

1) Draw the contour C on top of the dP_3 lattice starting from a degree 6 white vertex.

2) For all sides of "positive" length, we erase all the **black** vertices.

3) For all sides of "negative" length, we erase all the white vertices.

For sides of "zero length" (between two sides of positive length), we erase the **white corner** or keep it depending on convexity.

4) After removing "dangling" edges and their incident faces, remaining subgraph inside contour is $\mathcal{G}(\mathcal{C})$.

Beyond Aztec Dragons and Castles

30 / 66

Aztec Dragons (Ciucu, Cottrell-Young, Propp) Revisited

Turning Subgraphs into Laurent Polynomials

$$G \longrightarrow cm(G) \sum_{M = a \text{ perfect matching of } G} x(M)$$
, where

 $x(M) = \prod_{edge e \in M} \frac{1}{x_i x_j}$ (for edge *e* straddling faces *i* and *j*),

cm(G) = the covering monomial of the graph G_n (which records what face labels are contained in G and along its boundary).

Remark: This is a reformulation of weighting schemes appearing in works such as Speyer ("Perfect Matchings and the Octahedron Recurrence"), Goncharov-Kenyon ("Dimers and cluster integrable systems"), and Di Francesco ("T-systems, networks and dimers").

Alternative definition of cm(G): We record all face labels inside contour and then divide by face labels straddling dangling edges.

ロト (日) (日) (日) (日) (日) (日)

Initial cluster $\{x_1, x_2, \ldots, x_6\}$ in terms of contours

Consider the following six special contours

$$C_{1} = (0, 0, 1, -1, 1, 0), \quad C_{2} = (-1, 1, 0, 0, 0, 1),$$

$$C_{3} = (0, 1, -1, 1, 0, 0), \quad C_{4} = (1, 0, 0, 0, 1, -1),$$

$$C_{5} = (1, -1, 1, 0, 0, 0), \quad C_{6} = (0, 0, 0, 1, -1, 1).$$

$$c_{6} = (0, 0, 0, 1, -1, 1),$$

Applying our general algorithm, $\mathcal{G}(C_i)$'s correspond to graphs consisting of a single edge and a triangle of faces.

Initial cluster $\{x_1, x_2, \ldots, x_6\}$ in terms of contours

Consider the following six special contours

$$C_{1} = (0, 0, 1, -1, 1, 0), \quad C_{2} = (-1, 1, 0, 0, 0, 1),$$

$$C_{3} = (0, 1, -1, 1, 0, 0), \quad C_{4} = (1, 0, 0, 0, 1, -1),$$

$$C_{5} = (1, -1, 1, 0, 0, 0), \quad C_{6} = (0, 0, 0, 1, -1, 1).$$

$$c_{6} = (0, 0, 0, 1, -1, 1),$$

Applying our general algorithm, $\mathcal{G}(C_i)$'s correspond to graphs consisting of a single edge and a triangle of faces.

Using $G \longrightarrow cm(G) \sum_{M = a \text{ perfect matching of } G} x(M)$, we see $cm(\mathcal{G}(C_1)) = x_1 x_4 x_5 \text{ and } x(M) = \frac{1}{x_4 x_5}$, hence $G \longrightarrow \frac{x_1 x_4 x_5}{x_4 x_5} = x_1$ Similar calculations show $\mathcal{G}(C_i)) \longleftrightarrow x_i$ for $i \in \{1, 2, ..., 6\}$.

Theorem 3 [Lai-M 2015]

Theorem (Reformulation of [Leoni-M-Neel-Turner 2014]): Let $Z^S = [z_1, z_2, ..., z_6]$ be the cluster obtained after applying a toric mutation sequence S to the initial cluster $\{x_1, x_2, ..., x_6\}$.

Let $w(G) = cm(G) \sum_{M \text{ a perfect matching of } G} x(M)$.

Let $\mathcal{G}(\mathcal{C}_i)$ be the subgraph cut out by the contour \mathcal{C}_i .

Then $Z^S = [w(\mathcal{G}(\mathcal{C}_1^S), w(\mathcal{G}(\mathcal{C}_2^S), \dots, w(\mathcal{G}(\mathcal{C}_6^S))]$ where $\mathcal{C}^{S_1}, \mathcal{C}^{S_2}, \dots, \mathcal{C}^{S_6}$ are defined as follows:

1) Start with the six-tuple [(0, -1, 1), (0, -1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 0, 0)] in \mathbb{Z}^3 . 2) Toric Mutations transform this six-tuple as illustrated earlier. 3) Map from \mathbb{Z}^3 to \mathbb{Z}^6 :

 $(i, j, k) \rightarrow (a, b, c, d, e, f) = (j + k, -i - j - k, i + k, j - k + 1, -i - j + k - 1, i - k + 1)$

and use these six six-tuples to define the contours $\mathcal{C}^{S_1}, \mathcal{C}^{S_2}, \dots, \mathcal{C}^{S_6}$.

・ロ ・ ・ ヨ ・ ・ ヨ ・ ・ ・ 日 ・ う へ つ ・

Reminder of \mathbb{Z}^3 transformations

Reminder of \mathbb{Z}^3 transformations

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 36 / 66

We start at the initial prism [(0, -1, 1), (0, -1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 0, 0)]. Applying the mutation sequence $\mu_1, \mu_2, \mu_3\mu_4\mu_5\mu_6$ corresponds to the walk

 $\{(0,-1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(0,1),(0,0)\} \rightarrow \{(-1,1),(0,1),(-1,2)\}$

Projecting to
$$\mathbb{Z}^2$$
 using $(i,j) \leftrightarrow (j,-i-j,i,j+1,-i-j-1,i+1)$ and $(j+1,-i-j-1,i+1,j,-i-j,i)$.

 $\begin{array}{l} C_1 = (0,0,1,-1,1,0), \ C_2 = (-1,1,0,0,0,1), \ C_3 = (0,1,-1,1,0,0), \\ C_4 = (1,0,0,0,1,-1), \ C_5 = (1,-1,1,0,0,0), \ C_6 = (0,0,0,1,-1,1), \\ \end{array}$

We start at the initial prism [(0, -1, 1), (0, -1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 0, 0)]. Applying the mutation sequence $\mu_1, \mu_2, \mu_3\mu_4\mu_5\mu_6$ corresponds to the walk

 $\{(0,-1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(0,1),(0,0)\} \rightarrow \{(-1,1),(0,1),(-1,2)\}$

Projecting to
$$\mathbb{Z}^2$$
 using $(i,j) \leftrightarrow (j,-i-j,i,j+1,-i-j-1,i+1)$ and $(j+1,-i-j-1,i+1,j,-i-j,i)$.

 $\begin{array}{l} C_1' = (2, -1, 0, 1, 0, -1), \ C_2' = (1, 0, -1, 2, -1, 0), \ C_3 = (0, 1, -1, 1, 0, 0), \\ C_4 = (1, 0, 0, 0, 1, -1), \ C_5 = (1, -1, 1, 0, 0, 0), \ C_6 = (0, 0, 0, 1, -1, 1). \end{array}$

We start at the initial prism [(0, -1, 1), (0, -1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 0, 0)]. Applying the mutation sequence $\mu_1, \mu_2, \mu_3\mu_4\mu_5\mu_6$ corresponds to the walk

 $\{(0,-1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(0,1),(0,0)\} \rightarrow \{(-1,1),(0,1),(-1,2)\}$

Projecting to
$$\mathbb{Z}^2$$
 using $(i,j) \leftrightarrow (j,-i-j,i,j+1,-i-j-1,i+1)$ and $(j+1,-i-j-1,i+1,j,-i-j,i)$.

 $\begin{array}{l} C_1' = (2, -1, 0, 1, 0, -1), C_2' = (1, 0, -1, 2, -1, 0), C_3' = (1, -1, 0, 2, -2, 1), \\ C_4' = (2, -2, 1, 1, -1, 0), C_5 = (1, -1, 1, 0, 0, 0), C_6 = (0, 0, 0, 1, -1, 1). \end{array}$

We start at the initial prism [(0, -1, 1), (0, -1, 0), (-1, 0, 0), (-1, 0, 0), (-1, 0, 1), (0, 0, 1), (0, 0, 0)]. Applying the mutation sequence $\mu_1, \mu_2, \mu_3\mu_4\mu_5\mu_6$ corresponds to the walk

 $\{(0,-1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(-1,0),(0,0)\} \rightarrow \{(-1,1),(0,1),(0,0)\} \rightarrow \{(-1,1),(0,1),(-1,2)\}$

Projecting to
$$\mathbb{Z}^2$$
 using $(i,j) \leftrightarrow (j, -i-j, i, j+1, -i-j-1, i+1)$ and
 $(j+1, -i-j-1, i+1, j, -i-j, i).$
 $C'_1 = (2, -1, 0, 1, 0, -1), C'_2 = (1, 0, -1, 2, -1, 0), C'_3 = (1, -1, 0, 2, -2, 1),$
 $C'_4 = (2, -2, 1, 1, -1, 0), C'_5 = (3, -2, 0, 2, -1, -1), C'_5 = (2, -1, -1, 3, -2, 0).$

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 40 / 66

 $\begin{array}{l} C_1'=(2,-1,0,1,0,-1), \ C_2'=(1,0,-1,2,-1,0), \ C_3'=(1,-1,0,2,-2,1), \\ C_4'=(2,-2,1,1,-1,0), \ C_5'=(3,-2,0,2,-1,-1), \ C_6'=(2,-1,-1,3,-2,0). \end{array}$

Example 2: $S = \tau_1 \tau_2 \tau_3 \tau_1 \tau_2 \tau_3 \tau_2 \tau_1 \tau_4$

We reach {(1,3), (1,2), (0,3)} from applying $\tau_1 \tau_2 \tau_3 \tau_1 \tau_2 \tau_3 \tau_2 \tau_1$ ($\tau_1 = \mu_1 \mu_2$, $\tau_2 = \mu_3 \mu_4$, and $\tau_3 = \mu_5 \mu_6$) and then $\tau_4 = \mu_1 \mu_4 \mu_1 \mu_5 \mu_1$ yields $C^S = [\sigma^{-1} C_1^3, C_1^3, C_1^2, \sigma^{-1} C_1^2, \sigma^{-1} C_0^3, C_0^3] =$

[(2, -3, 0, 5, -6, 3), (3, -4, 1, 4, -5, 2), (2, -3, 1, 3, -4, 2),

(1,-2,0,4,-5,3),(2,-2,-1,5,-5,2),(3,-3,0,4,-4,1)].

Example 2: $S = \tau_1 \tau_2 \tau_3 \tau_1 \tau_2 \tau_3 \tau_2 \tau_1 \tau_4$

We reach {(1,3), (1,2), (0,3)} from applying $\tau_1 \tau_2 \tau_3 \tau_1 \tau_2 \tau_3 \tau_2 \tau_1$ ($\tau_1 = \mu_1 \mu_2$, $\tau_2 = \mu_3 \mu_4$, and $\tau_3 = \mu_5 \mu_6$) and then $\tau_4 = \mu_1 \mu_4 \mu_1 \mu_5 \mu_1$ yields $C^S = [\sigma^{-1} C_1^3, C_1^3, C_1^2, \sigma^{-1} C_1^2, \sigma^{-1} C_0^3, C_0^3] =$

$$\begin{split} & [(2,-3,0,5,-6,3),(3,-4,1,4,-5,2),(2,-3,1,3,-4,2),\\ & (1,-2,0,4,-5,3),(2,-2,-1,5,-5,2),(3,-3,0,4,-4,1)]. \end{split}$$

Example 3: $S = \tau_1 \tau_2 \tau_3 \tau_1 \tau_3 \tau_2 \tau_1 \tau_4 \tau_5$

$$[(0, -2, 1, 3, -5, 4), (-1, -1, 0, 4, -6, 5), (0, -1, -1, 5, -6, 4),$$

(1, -2, 0, 4, -5, 3), (0, -1, 0, 3, -4, 3), (-1, 0, -1, 4, -5, 4)].

Beyond Aztec Dragons and Castles

April 8, 2016 44 / 66

Example 3: $S = \tau_1 \tau_2 \tau_3 \tau_1 \tau_3 \tau_2 \tau_1 \tau_4 \tau_5$

$$[(0, -2, 1, 3, -5, 4), (-1, -1, 0, 4, -6, 5), (0, -1, -1, 5, -6, 4),$$

(1, -2, 0, 4, -5, 3), (0, -1, 0, 3, -4, 3), (-1, 0, -1, 4, -5, 4)].

Beyond Aztec Dragons and Castles

April 8, 2016 45 / 66

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Possible Shapes of Aztec Castles

Cross-section when k positive

Cross-section when k negative

Self-intersecting Contours

Algebraic formula

$$z_{i}^{j,k} = x_{r} A^{\lfloor \frac{(i^{2}+ij+j^{2}+1)+i+2j}{3} \rfloor} B^{\lfloor \frac{(i^{2}+ij+j^{2}+1)+2i+j}{3} \rfloor} C^{\lfloor \frac{i^{2}+ij+j^{2}+1}{3} \rfloor} D^{\lfloor \frac{(k-1)^{2}}{4} \rfloor} E^{\lfloor \frac{k^{2}}{4} \rfloor}$$

still works for (a, b, c, d, e, f) when alternating in signs but combinatorial formula for such cases open.

Work in progress (with David Speyer): Conjectural Double-Dimer combinatorial interpretation for self-intersecting contours.

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 49 / 66

We use **Kuo's Method of Graphical Condensation** for counting Perfect Matchings. We isolate four vertices $\{a, b, c, d\}$ in our graph on the boundary of the contour.

We use **Kuo's Method of Graphical Condensation** for counting Perfect Matchings. We isolate four vertices $\{a, b, c, d\}$ in our graph on the boundary of the contour.

Remark: As side lengths change and contour goes from convex to concave or vice-versa, we have to use different types of Kuo Condensations: (Balanced, Unbalanced, Non-alternating Balanced, and Monochromatic).

We use **Kuo's Method of Graphical Condensation** for counting Perfect Matchings. We isolate four vertices $\{a, b, c, d\}$ in our graph on the boundary of the contour.

Remark: As side lengths change and contour goes from convex to concave or vice-versa, we have to use different types of Kuo Condensations: (Balanced, Unbalanced, Non-alternating Balanced, and Monochromatic).

Remark: Further, we will define 15 different types of condensations by choosing 4 out of 6 points. These 15 condensations correspond to the 15 possible toric mutations, up to symmetry.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Degenerate Octahedra projected from $\mathbb{Z}^6 \to \mathbb{Z}^3$

э

Crash Course on Kuo Condensation

Let $G = (V_1, V_2, E)$ be a (weighted) planar bipartite graph and p_1, p_2, p_3, p_4 are four vertices appearing in cyclic order on a face of G.

Theorem (Balanced Kuo Condensation) [Theorem 5.1 in [Kuo]] Let $|V_1| = |V_2|$ with $p_1, p_3 \in V_1$ and $p_2, p_4 \in V_2$. Then

$$w(G)w(G - \{p_1, p_2, p_3, p_4\}) = w(G - \{p_1, p_2\})w(G - \{p_3, p_4\}) + w(G - \{p_1, p_4\})w(G - \{p_2, p_3\}).$$

Theorem (Unbalanced Kuo Condensation) [Theorem 5.3 in [Kuo]] Let $|V_1| = |V_2| + 1$ with $p_1, p_2, p_3 \in V_1$ and $p_4 \in V_2$. Then

$$w(G - \{p_2\})w(G - \{p_1, p_3, p_4\}) = w(G - \{p_1\})w(G - \{p_2, p_3, p_4\}) + w(G - \{p_3\})w(G - \{p_1, p_2, p_4\}).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Crash Course on Kuo Condensation

Let $G = (V_1, V_2, E)$ be a (weighted) planar bipartite graph and p_1, p_2, p_3, p_4 are four vertices appearing in cyclic order on a face of G.

Theorem (Non-alternating Balanced) [Theorem 5.2 in [Kuo]] Let $|V_1| = |V_2|$ with $p_1, p_2 \in V_1$ and $p_3, p_4 \in V_2$. Then

$$w(G - \{p_1, p_4\})w(G - \{p_2, p_3\}) = w(G)w(G - \{p_1, p_2, p_3, p_4\}) + w(G - \{p_1, p_3\})w(G - \{p_2, p_4\}).$$

Theorem (Monochromatic Condensation) [Theorem 5.4 in [Kuo]] Let $|V_1| = |V_2| + 2$ with $p_1, p_2, p_3, p_4 \in V_1$. Then

$$w(G - \{p_1, p_3\})w(G - \{p_2, p_4\}) = w(G - \{p_1, p_2\})w(G - \{p_3, p_4\}) + w(G - \{p_1, p_4\})w(G - \{p_2, p_3\}).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

How we pick vertices A, B, \ldots, F

Lai-M (IMA and Univ. Minnesota)

Beyond Aztec Dragons and Castles

April 8, 2016 54 / 66

How we pick vertices A, B, \ldots, F

Removing points distance 2 apart, recurrence (R4) in [Lai]

 $\{A\bullet,C\bullet\},\ \{B\circ,D\bullet\},\ \{C\bullet,E\circ\},\ \{D\bullet,F\bullet\},\ \{A\bullet,E\circ\},\ or\ \{B\circ,F\bullet\}$

correspond to mutations between Model I and Model II.

Removing points distance 1 apart, recurrence (R1) in [Lai]

$$\{A\bullet,B\circ\},\ \{B\circ,C\bullet\},\ \{C\bullet,D\bullet\},\ \{D\bullet,E\circ\},\ \{E\circ,F\bullet\},\ {\rm or}\ \{A\bullet,F\bullet\}$$

correspond to mutations between Model II and Model III.

Removing points distance 3 apart, recurrence (R2) in [Lai]

$$\{A\bullet,C\bullet\},\ \{B\circ,E\circ\},\ {\rm or}\ \{C\bullet,F\bullet\}$$

correspond to mutations between Model III and itself or Model IV.

Unbalanced Case: $w(\sigma C_i^j)w(C_{i-1}^{j+2}) = \cdots + \ldots$

- ₹ 🖬 🕨

< □ > < 同 > < 三 >

Unbalanced Case: $\cdots = w(\mathcal{C}_{i-1}^{j+1})w(\sigma\mathcal{C}_{i}^{j+1}) + \ldots$

Unbalanced Case:
$$\cdots = \cdots + w(\sigma C_{i-1}^{j+1}) w(C_i^{j+1})$$

*ロト *部ト *注ト *注ト

Monochromatic Case $z_{i-1}^{j+2,k} z_{i+1}^{j,k} = (R^2) \cdots + \ldots$

April 8, 2016 62 / 66

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Monochromatic Case $\cdots =^{(R2)} z_i^{j+1,k-1} z_i^{j+1,k+1} + \dots$

April 8, 2016 63 / 66

イロト 不得 トイヨト イヨト 二日

Monochromatic Case $\cdots = {}^{(R2)} \cdots + (z_i^{j+1,k})^2$

April 8, 2016 64 / 66

イロト 不得 トイヨト イヨト 二日

Question: Work of Di Francesco and Soto-Garrido studied arctic curves from T-systems. Can we adapt these methods to obtain Limit Shapes for the graphs arising from toric mutations sequences for the dP_3 quiver?

Question: Work of Di Francesco and Soto-Garrido studied arctic curves from T-systems. Can we adapt these methods to obtain Limit Shapes for the graphs arising from toric mutations sequences for the dP_3 quiver?

Question: There are many other quivers that arise in the physics literature or admit brane tilings. Can we obtain analogous combinatorial interpretations of toric cluster variables in these cases as well?

Question: Work of Di Francesco and Soto-Garrido studied arctic curves from T-systems. Can we adapt these methods to obtain Limit Shapes for the graphs arising from toric mutations sequences for the dP_3 quiver?

Question: There are many other quivers that arise in the physics literature or admit brane tilings. Can we obtain analogous combinatorial interpretations of toric cluster variables in these cases as well?

Question: Finally, we focused on cluster expansions assuming the initial cluster was Model I. What if we start from a different model. It appears that it the initial cluster is of Model IV that one gets Hexagonal dungeons. T. Lai and I plan to do further work on **Dungeons and Dragons**.

Thanks for Coming (Slides at http://math.umn.edu/~musiker/MIT16.pdf)

Richard Eager and Sebastian Franco, Colored BPS Pyramid Partition Functions, Quivers and Cluster Transformations, arXiv:1112.1132.
Eric Kuo, Applications of Graphical Condensation for Enumerating Matchings and Tilings, Theoretical Computer Science, 319:29–57.

- Sicong Zhang, *Cluster Variables and Perfect Matchings of Subgraphs of the dP*₃ Lattice, 2012 REU Report, arXiv:1511.06055.
- Tri Lai, A Generalization of Aztec Dragons, arXiv:1504.00303, to appear in Graphs and Combinatorics.

• Gale-Robinson Sequences and Brane Tilings (with In-Jee Jeong and and Sicong Zhang), Discrete Mathematics and Theoretical Computer Science Proc. **AS** (2013), 737-748.

• Aztec Castles and the dP3 Quiver (with Megan Leoni, Seth Neel, and Paxton Turner), Journal of Physics A: Math. Theor. 47 474011, arXiv:1308.3926.

 Beyond Aztec Castles: Toric Cascades in the dP₃ Quiver (with Tri Lai), arXiv:1512.00507. Lai-M (IMA and Univ. Minnesota) Beyond Aztec Dragons and Castles April 8, 2016 66 / 66