Instructor: Ke Zhu (zhux0086@math.umn.edu) Vincent Hall 221
Lectures: MWF 12:20–1:10 in MCB 3-120.
Discussion sections (Tu, Th) and TA offices:

<table>
<thead>
<tr>
<th>Time</th>
<th>Section</th>
<th>Instructor</th>
<th>Email</th>
<th>Location</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>12:20-1:10 in AkerH 211</td>
<td>Nadathur, Prerna</td>
<td>nada0009@umn.edu</td>
<td>426 VinH</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>12:20-1:10 in AkerH 215</td>
<td>Negaard, Shannon R</td>
<td>nega0024@umn.edu</td>
<td>555 VinH</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>12:20-1:10 in 1701 Univ 207</td>
<td>Phelps, Rosemary</td>
<td>phelp130@umn.edu</td>
<td>555 VinH</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>12:20-1:10 in AkerH 317</td>
<td>Knoche, Randolph Lee Granheim</td>
<td>rlgknoche@gmail.com</td>
<td>TBA</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1:25-2:15 in AkerH 211</td>
<td>Nadathur, Prerna</td>
<td>nada0009@umn.edu</td>
<td>426 VinH</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1:25-2:15 in AkerH 215</td>
<td>Negaard, Shannon R</td>
<td>nega0024@umn.edu</td>
<td>555 VinH</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1:25-2:15 in 1701 Univ 207</td>
<td>Phelps, Rosemary Anne</td>
<td>phelp130@umn.edu</td>
<td>555 VinH</td>
<td></td>
</tr>
</tbody>
</table>

Course webpage: www.math.umn.edu/~zhux0086/math1271.html
Material: We will cover most sections in chapter 2-6. (We will begin with review on chapter 1.)

Homework: Homework will be assigned at the end of lectures, and is due each Tuesday, September 15 - December 14 for class discussion. Homework do not need to be turned in, but it is important to do all homework problems to master the material. You may work together on homework problems, but you must write up the solutions by you own. There will be quizzes similar to homework problems in discussion sections. Check the course webpage for suggested homework.

Quizzes: 15 points each, best 9 in 10 quizzes. Problems will be similar to assigned homework problems. Thursdays: September 16; September 23; September 30; October 14; October 21; October 28; November 11; November 18; Tuesdays, November 23; and December 7.
Midterms: 100 points each. Close book, no calculator. If you have to miss a Midterm, you must let your TA know in advance for alternative arrangement.

I. Thursday, October 7: Chapters 1 and 2.
II. Thursday, November 4: Sections 3.1–6, 3.9–10, 4.1–2.
III. Thursday, December 2: Sections 4.3–9, Chapter 5.

Final Exam: 250 points. Thursday, December 16, 1:30–4:30 PM, room TBA. Chapters 1–6.
Grading: The final grade is based on quizzes and discussion sections (20%), midterm1 (15%), midterm2 (15%), midterm3 (15%) and final (35%).
Gradelines: We do not have fixed gradelines for this class. Typically the distribution of the final grades is approximately 15% A, 25% B, 35% C, and 25% D and F.

All exams (quizzes, midterms and final) are closed book, no calculator, no notes exams.

Liberal Education: This course fulfills the Mathematical Thinking component of the Liberal Education requirements at the University of Minnesota. An important part of any liberal education is learning to use abstract thinking and symbolic language to solve practical problems. Calculus is one of the pillars of modern mathematical thought, and has diverse applications essential to our complex world. In this course, students will be exposed to theoretical concepts at the heart of calculus and to numerous examples of real-world applications.

Disability Services: If you receive test accommodations through Disability Services, I will need a copy of your accommodation letter as soon as possible. Your exams (and quizzes) need to be scheduled by you
with the DS Testing Center via the online scheduling site at least 7 days in advanced before you need to take the exam.
http://ds.umn.edu/resources_general/TestingCenter/testing.html

Official University Statement on Academic Dishonesty: Academic dishonesty in any portion of the academic work for a course shall be grounds for awarding a grade of F or N for the entire course.

Description of the Course

This is the first semester of a two semester course in one-variable calculus pitched to students not in IT.

Prereq: 4 yrs high school math including trig or satisfactory score on placement test or grade of at least C- in [1151 or 1155]

Description: Overview: Tangent lines; limits and continuity; differentiation: definition, basic rules, chain rule, rules for trig, exp and log functions; implicit differentiation; rates of change, max-min, related rates problems; 2nd derivative test; curve sketching; linear approximation and differentials; L’Hospital’s rule; integration: definition, antiderivative, area; simple substitution; volumes of solids by cross sections and shells; work; average value of a function. Audience: The beginning of the standard course for students outside of IT. Also taken by IT students who need to start calculus in the middle of year. Students desiring only one semester of calculus should take Math 1142.