1. Find the critical points of the following function. Use the first derivative test to classify these points as either points where the function has a local maximum value or where it has a local minimum value.

 \(f(x) = \frac{x}{x^2 + 16} \)
 \[\frac{d}{dx}f(x) = \frac{16-x^2}{(x^2+16)^2} \]

 Critical Points: \(x = -4, x = 4 \)

 Applying the First Derivative Test, \(f(x) \) has a local minimum at \(x = -4 \) and a local maximum at \(x = 4 \).

2. The function \(f(x) \) is continuous and has the following properties:

 a) \(f'(-3) = 0, f'(1) = 0, f'(5) = 0 \)

 b) \(f'(x) > 0 \) if \(x < -3 \) if \(1 < x < 5 \), and if \(x > 5 \). Also \(f'(x) < 0 \) if \(-3 < x < 1 \).

 Find the critical points for \(f(x) \). Determine for which values of \(x \) the function \(f(x) \) has a local maximum value and the values of \(x \) for which the function \(f(x) \) has a local minimum value.

 \[\frac{d}{dx}f(x) = x^{-2/3}(4x-8) \]

 Critical Points: \(f'(0) = \text{DNE}, f'(2) = 0 \)

 \(f(x) \) has neither at \(x = 0 \)

 \(f(x) \) has a local minimum at \(x = 2 \)