Hints for Review Sheet:

1. The limit exists & there's only really
 one sure way to prove that.

2. There's a solid, and I didn't state it clearly, but
 you're finding \(\iiint \vec{F} \cdot d\vec{S} \).

 You want the divergence theorem.

3. It's a solid again.

 Div. Thm

4. Fundamental Theorem of Line Integrals (FTLI).

 \[f = x \sin y + y \cos z \]

5. \(f(xy^2) = xy^2 \), \(g = 2xy + 2xz + 2y^2 \)

6. Let \(u \) & \(v \) be what you're tempted to make them,
 that is, \(v = y + x \), \(u = y - x \). Solve for \(x \) and \(y \).

 The bounds in \(u \) & \(v \) don't make a rectangle in this
 problem. They give
4. Start with the right hand side, and keep in mind that it's equivalent to
\[e^{2s} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2}. \]

8. The cross section in the \(yz \)-plane is
\[z^2 = 3y^2 \]
\[or \]
\[z = \pm \sqrt{3}y \]

We want to use spherical coordinates, with a fixed \(\phi \)
(since \(\rho \) & \(\theta \) are not fixed) in the parametrization.

9. R:

With just the transformation, we don't have the integral to give a hint.
Still, \(y = \frac{1}{x} \) and \(y = \frac{4}{x} \) hint strongly at isolating the 1 & 4:
\[y \cdot x = 1 \quad \& \quad y \cdot x = 4. \]
So let \(u = y \cdot x \)

Γ No for \(y = x, \ y = 4x \). Rewrite them as
\[\& \ y = 1 \cdot x, \ y = 4 \cdot x \]
& isolate the constants again.
10. Define \(\vec{F} = \langle F_1, F_2, F_3 \rangle \), \(\vec{G} = \langle G_1, G_2, G_3 \rangle \).

Take one side and one operation at a time.

11. \(\vec{E} \). This can be done as a straightforward integral, or using Stoke's Thm.

Actually, applying it in one direction and then backwards for a different surface with the same boundary is the best, with the easiest (and fewest) integration.

12. \(g(x,y,z) = C_1 \), \(h(x,y,z) = C_2 \).

\[\nabla f = \lambda \nabla g + \mu \nabla h. \]

13. Use chain rule.

14. When you find curl \(\vec{F} \), plug in the parametrization of the sphere. Note how this interacts with \(\vec{n} \) on the unit sphere (b.t.w. \(\vec{n} = \langle x, y, z \rangle \) on the unit sphere).

15. Break it up into 4ths
16. This one should be pretty straight-forward:

\[\iiint \vec{F} \cdot d\vec{S} \]

![Diagram with vector field and surface integral](image)

\[\langle \cos \Theta, \sin \Theta, -4 \rangle \]

Oops... 2nd 16: \(f = xyz, \ g = x + 2y + 3z = 6. \)

![Diagram with coordinate axes](image)

17. (a) \(\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} \)

Similarly for (b), only \(\frac{\partial x}{\partial r} \) & \(\frac{\partial x}{\partial \theta} \), \(\frac{\partial y}{\partial r} \) & \(\frac{\partial y}{\partial \theta} \) must be filled in.

(c) \(\frac{\partial^2}{\partial r^2} [F] = \frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial r} \), no matter what \(F \) is (even if it's already a derivative).