Math 2374, Lecture 10: Quiz 5
20 October 2011

Name: ___________________________ Section #: ______________________

For all questions, show your work. State formulas, if they are needed. Use the back of this sheet if you need more space.

1. Imagine a parabolic prism (a tall, solid object, whose cross section is a part of a parabola) defined on the xy–plane by $y = 0$ and $y = x^2 - 4$. This object is then cut off by the planes $z = 0$ and $z = 5 + x$ (so that the top of the object is angled, with one side of the flat edge being of height 3 and the other of height 5). Find the volume of this figure.

Hints: 1. Draw the cross sections in the xz– and xy– planes; 2. This is very similar to the problems from lab 3.

Answer: We set up the integral like we did in lab: start with the “height” differences, and integrate with respect to z. Since the equations were given in the problem, as well as what values z will take on the endpoints, we have an easy time of picking the limits of integration. This makes the innermost integral. Then, we use the cross section in the xy–plane to find an equation for y in terms of x. These become the limits of integration for the integration with respect to y. Finally, we use the cross xy– plane cross section once again to obtain the absolute smallest and largest values x can achieve ($–2$ and 2, respectively). We obtain the integral:

$$
\int_{–2}^{2} \int_{x^2 – 4}^{0} \int_{0}^{5+x} dz \ dy \ dx
$$

$$
= \int_{–2}^{2} \int_{x^2 – 4}^{0} (5 + x)dy \ dx
$$

$$
= \int_{–2}^{2} (5 + x)y|_{x^2 – 4}^{0} dx
$$

$$
= \int_{–2}^{2} (5 + x)(4 – x^2)dx
$$

$$
= \int_{–2}^{2} (20 + 4x – 5x^2 – x^3)dx
$$

$$
=(20x + 2x^2 – 5x^3/3 – x^4/4)|_{–2}^{2}
$$

$$
=20(2 – (–2)) + 2(4 – 4) – 5/3 · (8 – (–8)) – 1/4 · (16 – 16)
$$

$$
=80 – 80/3 = 160/3
$$

2. If $\vec{c}(t) = < \cos(t^2), 2 \cdot t^2, \sin(t^2) >$, then what is the length of the line ($L(t)$) as $3 \leq t \leq 6$?

Answer: We solve this problem through a few steps:

i) $\vec{c}'(t) = < -2t \sin(t^2), 4t, 2t \cos(t^2) >$
ii)

\[||\mathbf{c}'(t)|| = \sqrt{(-2t)^2 \sin^2(t^2) + (4t)^2 + (2t)^2 \cos^2(t^2)} \]

\[= \sqrt{4t^2 + 16t^2 + 20t^2} \]

\[= 2\sqrt{5}t \]

iii) Now, we make use of the bounds on \(t \) and use them as limits of integration:

\[L(t) = \int_{3}^{6} ||\mathbf{c}'(t)|| \, dt \]

\[= \int_{3}^{6} (2\sqrt{5}t) \, dt \]

\[= \sqrt{5}t^2 \bigg|_{3}^{6} \]

\[= \sqrt{5}(36 - 9) = 27\sqrt{5} \]