I understand that we haven’t had a lot of time to cover triple integrals, and I feel it is a very sad thing. These were the things I remembered the most from my multivariable calculus class, and they were probably what I enjoyed the most. So, I’m writing up an example that I think is particularly cool. I’m going to calculate the volume of a sphere, using only triple integrals. (because we’re doing volume, the inside function is 1).

First, I’m going to set up the triple integral with a generic function \(f(x, y, z) \). I want you to see that it doesn’t matter what the function is; the setup for the integral over the space will be the space occupied is what counts. In the case of a sphere, this is determined by the function \(x^2 + y^2 + z^2 = C^2 \), where \(C \) is the constant radius. For sake of conventional order, I’m going to choose to solve for \(z \) first, and therefore integrate with respect to \(z \) on the inner-most integral. Note that we’ll get two explicit functions. The following graphs show what the functions look like (top and bottom).

\[
\begin{align*}
z &= \sqrt{C^2 - y^2 - x^2} \\
z &= -\sqrt{C^2 - y^2 - x^2}
\end{align*}
\]

So, the inner-most limits of integration will be \(-\sqrt{C^2 - y^2 - x^2}\) and \(\sqrt{C^2 - y^2 - x^2}\) on bottom and top, respectively. Next, we explore where \(y \) can range. We look at the place, where \(y \) can range the most: when \(z = 0 \).

\[
\begin{align*}
y &= \sqrt{C^2 - x^2} \\
y &= -\sqrt{C^2 - x^2}
\end{align*}
\]

So, the limits for the next integral (with respect to \(y \)) will be \(-\sqrt{C^2 - x^2}\) and \(\sqrt{C^2 - x^2}\) for the bottom and top, respectively. Finally, we look for the limits with respect to \(x \). Once again, we look where \(x \) has its largest range: when both \(y \) and \(z \) are 0. Here, \(x \) ranges from \(-C\) to \(C \), which make the lowr and upper limits, respectively.
We can now put all of our information together:

\[
\int_{-C}^{C} \left(\int_{-\sqrt{C^2-x^2}}^{\sqrt{C^2-x^2}} \left(\int_{-\sqrt{C^2-y^2-x^2}}^{\sqrt{C^2-y^2-x^2}} f(x, y, z) \, dz \right) \, dy \right) \, dx
\]

Now, we can consider that we only care about the volume of the sphere. So, \(f(x, y, z) = 1 \) for our example. The integral reduces to:

\[
\int_{-C}^{C} \left(\int_{-\sqrt{C^2-x^2}}^{\sqrt{C^2-x^2}} \left(\int_{-\sqrt{C^2-y^2-x^2}}^{\sqrt{C^2-y^2-x^2}} \sqrt{C^2 - y^2 - x^2} + \sqrt{C^2 - y^2 - x^2} \, dy \right) \, dz \right) \, dx
\]

\[
= \int_{-C}^{C} \left(\int_{-\sqrt{C^2-x^2}}^{\sqrt{C^2-x^2}} (2\sqrt{C^2 - y^2 - x^2}) \, dy \right) \, dz \, dx
\]

\[
= \int_{-C}^{C} \left(\int_{-\sqrt{C^2-x^2}}^{\sqrt{C^2-x^2}} (2\sqrt{C^2 - x^2 - y^2}) \, dy \right) \, dx
\]

Now, we do that dreaded thing from Calc 2: the trig substitution. We want \(y^2 \) to equal \((C^2 - x^2) \sin^2(\theta) \), so we set

\[
y = \sqrt{C^2 - x^2} \sin(\theta)
\]

\[
\Rightarrow dy = \sqrt{C^2 - x^2} \cos(\theta) \, d\theta
\]

(limits: and when \(y = \sqrt{C^2 - x^2} \), \(\sin(\theta) = 1 \), so \(\theta = \pi/2 \)

and when \(y = -\sqrt{C^2 - x^2} \), \(\sin(\theta) = -1 \), so \(\theta = -\pi/2 \)

So, the integral becomes:

\[
\int_{-C}^{C} \left(\int_{-\pi/2}^{\pi/2} \left(2\sqrt{(C^2 - x^2) - (C^2 - x^2) \sin^2(\theta) \sqrt{(C^2 - x^2) \cos(\theta)}} \right) \, d\theta \right) \, dx
\]

\[
\int_{-C}^{C} \left(\int_{-\pi/2}^{\pi/2} \left(2\sqrt{(C^2 - x^2)(1 - \sin^2(\theta)) \sqrt{(C^2 - x^2) \cos(\theta)}} \right) \, d\theta \right) \, dx
\]

\[
\int_{-C}^{C} \left(\int_{-\pi/2}^{\pi/2} \left(2\sqrt{(C^2 - x^2) \cos^2(\theta) \sqrt{(C^2 - x^2) \cos(\theta)}} \right) \, d\theta \right) \, dx
\]

\[
\int_{-C}^{C} \left(\int_{-\pi/2}^{\pi/2} \left(2\sqrt{(C^2 - x^2)^2 \cos^2(\theta) \sqrt{(C^2 - x^2) \cos(\theta)}} \right) \, d\theta \right) \, dx
\]

\[
\int_{-C}^{C} \left(\int_{-\pi/2}^{\pi/2} \left(2(C^2 - x^2)^2 \cos^3(\theta)) \, d\theta \right) \, dx \text{ (but x, C, and 2 have nothing to do with } \theta)
\]

\[
\int_{-C}^{C} \left(2(C^2 - x^2) \int_{-\pi/2}^{\pi/2} (\cos^2(\theta)) \, d\theta \right) \, dx
\]
We now focus on the inside integral.

\[A = \int_{-\pi/2}^{\pi/2} \left(\cos^2(\theta) \right) d\theta \]

We then assign: \(u = \cos(\theta) \), so \(du = -\sin(\theta) d\theta \) and \(dv = \cos(\theta) d\theta \), so \(v = \sin(\theta) \).

\[A = \cos(\theta) \sin(\theta) \bigg|_{-\pi/2}^{\pi/2} - \left(- \int_{-\pi/2}^{\pi/2} \sin^2(\theta) d\theta \right) \]

\[= \cos(\pi/2) \sin(\pi/2) - \cos(-\pi/2) \sin(-\pi/2) + \int_{-\pi/2}^{\pi/2} (1 - \cos^2(\theta)) d\theta \]

\[= 0 - 0 + \int_{-\pi/2}^{\pi/2} 1 d\theta - \int_{-\pi/2}^{\pi/2} \cos^2(\theta) d\theta \]

\[= \theta \bigg|_{-\pi/2}^{\pi/2} - A \]

\[= \pi/2 - (-\pi/2) - A \]

\[= \pi - A \]

We take the very top, and it is equal to the very bottom, so \(A = \pi - A \), or \(A = \pi/2 \). Our overall integral is now:

\[\int_{-C}^{C} \left(2(C^2 - x^3) \right) \left(\int_{-\pi/2}^{\pi/2} \left(\cos^2(\theta) \right) d\theta \right) dx \]

\[= \int_{-C}^{C} 2(C^2 - x^3) Adx \]

\[= \int_{-C}^{C} 2(C^2 - x^2)(\pi/2)dx \]

\[= \pi \int_{-C}^{C} (C^2 - x^2)dx \]

\[= \pi \left(C^2x - \frac{x^3}{3} \right) \bigg|_{-C}^{C} \]

\[= \pi \left(C^3 - \frac{C^3}{3} - \left((-C)^3 - \frac{(-C)^3}{3} \right) \right) \]

\[= \pi \left(2C^3 - 2 \frac{C^3}{3} \right) \]

\[= \frac{4\pi C^3}{3} \]