MATH 3283W MidSemester Exam 1

Name: ____________________________

Explain all arguments clearly. All problems are worth 20 points. This is a closed book exam. No cheat sheets. Calculators may be used. You may use the back of each page if you need more room.

1) What is $\bigcup B_{B \in B}$ and $\bigcap B_{B \in B}$ when the collection B is given by

$$B = \left\{ (1 - \frac{1}{n}, 2 + \frac{2}{n}) \mid n \in \mathbb{N} \right\}$$

\[n=1: \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & \circ & \\
\end{array} \]

\[n=2: \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & \circ & \\
\end{array} \]

\[\vdots \]

\[n=10: \quad \begin{array}{ccccccc}
0 & 1 & 2 & 3 & \circ & \\
\end{array} \]

We claim that $\bigcup B = (0, 4)$. Note that for $n=1$, $B_1 = (0, 4)$, and for all $B \in B$

$n > 1$, $1 - \frac{1}{n} > 0$ and $2 + \frac{2}{n} < 4$, so $B_n \subseteq B_1$. So all the other B intervals $B \in B$ are contained in $(0, 4)$, and thus, $\bigcup B = (0, 4)$.

We also claim that $\bigcap B = [1, 2]$. For $x < 1$, there is an n large enough that $x < 1 - \frac{1}{n}$, and so x is not in the corresponding B. Likewise, for $x > 2$, there is an n large enough so that $x > 2 + \frac{2}{n}$, meaning x is not in the corresponding B. However, for all $x \in [1, 2]$, $x \in (1 - \frac{1}{n}, 2 + \frac{2}{n})$ for all $n \in \mathbb{N}$.

Hence, $\bigcap B = [1, 2]$.
2) Make a truth table for $p; q; p \Rightarrow q; \sim q; \sim p$. Use it to verify

$$[(p \Rightarrow q) \land (\sim q)] \Rightarrow \sim p$$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \Rightarrow q$</th>
<th>$\sim p$</th>
<th>$\sim q$</th>
<th>$[(p \Rightarrow q) \land (\sim q)] \Rightarrow \sim p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
3) Let \(S \) be a set and \(\sim \) an equivalence relation defined on \(S \). Let \(x, y \in S \).

(a) Define the equivalence class \(E_x \) (also denoted \([x]\)) of \(x \).

(b) Prove that \(E_x = E_y \) or \(E_x \cap E_y = \emptyset \).

\[
\begin{align*}
(a) \quad E_x &= \{ y \in S \mid x \sim y \} \\
(b) \quad \text{There are two cases to consider: let } y \in S. \text{ Then either } & x \sim y \quad \text{or} \quad x \not\sim y. \\
& \text{Since these are negations of each other, one or the other must be true.} \\
& x \not\sim y: \text{ Since } y \not\sim x \text{ and } \sim \text{ the transitive property holds for } \sim,
\end{align*}
\]

\[
\begin{align*}
z \in E_x & \iff z \sim x, \quad \text{and recall } y \sim x \\
& \iff y \sim z \\
& \iff z \in E_y.
\end{align*}
\]

So every element in \(E_x \) is in \(E_y \), and vice versa. Thus, \(E_x = E_y \).

\[
x \not\sim y: \text{ Let us say that } x \not\sim y \text{ but } E_x \cap E_y \neq \emptyset. \text{ Then, there must be some element } z \in E_x \cap E_y. \text{ Because } z \in E_x \cap E_y, \\
z \sim x \text{ and } z \sim y. \text{ By the transitive and symmetric properties, this means } x \sim y, \text{ a contradiction. So } E_x \cap E_y = \emptyset.
\]
4) Let \(f : X \to Y \) be a function. Let \(C_1 \) and \(C_2 \) be subsets of \(X \).

a. Prove \(f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2) \).

b. Prove if \(f \) is injective, \(f(C_1 \cap C_2) = f(C_1) \cap f(C_2) \).

(a) We wish to show that if \(y \in f(C_1 \cap C_2) \), then \(\exists x \in C_1 \cap C_2 \) such that \(f(x) = y \).

Start by setting \(y \in f(C_1 \cap C_2) \). That means there is some \(x \in C_1 \cap C_2 \) s.t. \(f(x) = y \). So, \(x \in C_1 \) and \(y \in f(C_1) \) and \(x \in C_2 \) and \(y \in f(C_2) \). Therefore, \(y \in f(C_1) \cap f(C_2) \).

We conclude that \(f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2) \). \(\blacksquare \)

(b) We have already shown inclusion in one direction, so we only need to establish that \(f \) is injective implies \(f(C_1 \cap C_2) = f(C_1) \cap f(C_2) \).

Let us assume we can find some \(y \in f(C_1) \cap f(C_2) \) such that \(y \notin f(C_1 \cap C_2) \). Since \(y \in f(C_1) \cap f(C_2) \), there is some \(x_1 \in C_1 \) and some \(x_2 \in C_2 \) such that \(f(x_1) = y = f(x_2) \). If \(y \notin f(C_1 \cap C_2) \), then there is no element \(x \in C_1 \cap C_2 \) such that \(y = f(x) \). So the \(x_1 \) cannot be in \(C_2 \) (it is already in \(C_1 \)) and \(x_2 \notin C_1 \). Therefore, \(x_1 \neq x_2 \). But \(f(x_1) = f(x_2) \) and \(f \) is injective \(\neq \). So \(y \notin f(C_1) \cap f(C_2) \), giving us the inclusion \(f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2) \).

Hence, \(f(C_1) \cap f(C_2) = f(C_1 \cap C_2) \) when \(f \) is injective \(\square \).
5) Let \(A \) and \(B \) be two sets. Let \(\mathcal{P}(A) \) and \(\mathcal{P}(B) \) be their respective power sets. Using the definition of power set, prove: if \(|A| \leq |B| \) then \(|\mathcal{P}(A)| \leq |\mathcal{P}(B)| \).

Recall that \(|A| \leq |B| \) iff there is an injection between \(A \) and \(B \). Let \(f \) be that injection, which sends elements \(a \in A \) to \(f(a) \in B \). We will use \(f \) to define an injection \(F: \mathcal{P}(A) \rightarrow \mathcal{P}(B) \). Given a subset \(S \subseteq A \), let \(F(S) = \{ f(x) | x \in S \} \). Then, if \(S \neq T \), we have \(S \neq T \) or \(T \neq S \).

Without loss of generality, assume \(S \neq T \). Then there is an \(x \in S \) s.t. \(x \notin T \). Since \(f \) is injective, this means \(f(x) \notin F(S) \) and we show that \(f(x) \notin F(T) \). If \(f(x) \in F(T) \), then there is some \(y \in T \) such that \(f(y) = f(x) \). But \(y \in T \) and \(x \notin T \), so \(y \neq x \) since \(f \) is injective. Thus, \(f(x) \notin F(T) \). Hence \(F(S) \neq F(T) \), and so \(F(S) \neq F(T) \). Thus \(F \) is an injection from \(\mathcal{P}(A) \) to \(\mathcal{P}(B) \), so \(|\mathcal{P}(A)| \leq |\mathcal{P}(B)| \).