8.2 3b) \[\sum \frac{(-2)^n}{n^2}. \] Since \[\frac{2^n}{n^2} \] is increasing (for \(n > 1 \)), \(\frac{2^n}{n^2} \to 0 \), so \(\sum \frac{(-2)^n}{n^2} \) diverges.

d) \[\sum \frac{-5^n}{2^n} = \sum \left(\frac{-5}{2} \right)^n \] is a geometric series. Since \(\frac{-5}{2} > 1 \), it diverges.

f) \[\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} : \text{ Check for absolute convergence first: } \int_2^{\infty} \frac{1}{x \ln x} \, dx = \int_2^{\infty} \frac{1}{u} \, du = \ln u \bigg|_2^{\infty} \] diverges.

Since \(\frac{1}{n \ln n} \) is decreasing and approaches 0, \(\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} \) converges by the alt. series test, so converges conditionally.

g) \[\sum \frac{(-1)^n}{n^{1/3}} : \text{ check for abs. conv. } \lim_{n \to \infty} \frac{\frac{1}{n^{1/3}}}{\frac{1}{n^{2/3}}} = \lim_{n \to \infty} \frac{1}{n} = 0 \text{ which is finite and non-zero. So by the limit comparison test (proved later in this text—we could had done integral instead)} \sum \frac{1}{n^{2/3}} \text{ diverges.} \]

\(\frac{1}{n^{1/3}} \) is decreasing and approaches 0, so \(\sum \frac{(-1)^n}{n^{1/3}} \) converges by the alt. series test, so conditionally convergent.

i. \[\sum \left(\frac{1}{n} - \frac{1}{n^2} \right). \]

\[= \sum \frac{n^2 - 1}{n}. \] Since \(\frac{n^2 - 1}{n} > \frac{1}{n} \) for \(n > 1 \) and \(\sum \frac{1}{n} \) diverges, we have \(\sum \frac{1}{n^2} - \frac{1}{n} \) diverges as well.

8. (a) Let \(\sum a_n \) and \(\sum b_n \) be two series of positive numbers with \(\left(\frac{a_n}{b_n} \right) \to c \) \(0 < c < \infty \). Suppose \(\sum a_n \) converges. Since \(\left(\frac{a_n}{b_n} \right) \to c \), \(\frac{b_n}{a_n} \to \frac{1}{c} \), so \(\frac{b_n}{a_n} \) is bounded, say by \(M \). Then \(b_n = \frac{b_n}{a_n} \cdot a_n < M a_n \), so since \(\sum a_n \) converges, \(\sum b_n \) converges as well by the comparison test.
8.3 a) False, \(R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \), if this limit exists. Not the same for, say, \(\sum 2^n x^n \)

b) False \(\sum \frac{x^n}{n} \) has \(R = 1 \), but interval \([-1, 1]) \), which is neither open nor closed

c) False \(\sum \frac{x^n}{n} \) has \(a_n > 0 \) \(\forall n \), but converges conditionally for \(x = -1 \).

5. a) \(\sum \frac{(2n)!}{(n!)^2} x^n \),
\(\lim_{n \to \infty} \frac{(2n+2)!}{(n+1)!} x^n = \lim \frac{(2n+2)(2n+1)}{(n+1)(n+1)} x^n = 4x \)

so \(R = 1/4 \)

c) \(\sum \frac{n!}{n^n} x^n \),
\(\lim \frac{((n+1)!)x^n}{(n+1)!} \frac{n^n}{n!} = \lim \frac{n^n}{n!} x^n = \frac{1}{e} x \)

so \(R = e \)

7. Suppose \((a_n) \) is bounded but \(\sum a_n \) diverges. Show the radius of convergence of \(\sum a_n x^n \) is equal to 1.

\(\sum a_n x^n \) is centred at 0, so since it diverges for \(x = 1 \), \(R \leq 1 \).

Since \(a_n \) is bounded, \(|a_n| < M \) for some \(M \). So for \(|x| < 1 \) we may compare \(\sum |a_n x^n| \) with the convergent geometric series \(\sum M|x|^n \). Thus for \(|x| < 1 \), \(\sum a_n x^n \) converges absolutely, so \(R = 1 \).