10. (a) \(a_1 = 3.1 \quad a_2 = 3.14 \quad a_3 = 3.141 \quad a_9 = \text{approx. of } \pi \text{ to } n \text{ decimal places.} \)
\(a_n \) is rational, since the decimal representations are finite in length.
Show \((a_n) \to \pi \); let \(\varepsilon > 0 \). Let \(N \) be the natural number corresponding to the first non-zero decimal place in a decimal approximation of \(\varepsilon \). Then for \(n > N \),
\[|a_n - \pi| < \varepsilon. \] So \((a_n) \to \pi \).

(b) Let \(b_n = \pi - a_n \), where \(a_n \) is defined as above. Since \(a_n \) is rational, \(\pi - a_n \) is irrational.
Show \((b_n) \to 0 \); let \(\varepsilon > 0 \) and choose \(N \) as above. Then
\[|b_n - 0| = |a_n - \pi| < \varepsilon. \] So \((b_n) \to 0 \).

12. (a) Suppose \(\lim s_n = 0 \). If \((t_n) \) is a bounded sequence, show \(\lim (s_n t_n) = 0 \).

Proof. Suppose \(\lim s_n = 0 \), suppose \((t_n) \) is a bounded sequence. Then \(\exists M \in \mathbb{R} \) so \(|t_n| < M \) for all \(n \in \mathbb{N} \). Let \(\varepsilon > 0 \). Since \((s_n) \to 0 \), \(\exists N_1 \) st. for \(n > N_1 \), \(|s_n| < \varepsilon/4M \).
Then for \(n > N_1 \),
\[|s_n t_n - 0| < |s_n||t_n - b| < |s_n||t_n - b| < |s_n||t_n - b| < M \frac{|t_n - b|}{|t_n - b|} = \frac{\varepsilon}{4M} < \varepsilon. \] So \((s_n t_n) \to 0 \).

(b) Let \(s_n = \frac{1}{n} \), let \(t_n = n^2 \). Then \((s_n t_n) = (n) \), which does not converge to 0.

13. Suppose \((a_n), (b_n), (c_n) \) are sequences st. \(a_n \leq b_n \leq c_n \) for all \(n \in \mathbb{N} \), and such that
\(\lim a_n = \lim c_n = b. \) Show that \((b_n) \to b. \)

Let \(\varepsilon > 0 \). Since \((a_n) \to b \), \(\exists N_1 \in \mathbb{N} \) st. for \(n > N_1 \), \(|a_n - b| < \varepsilon \).
In particular \(b - \varepsilon < a_n \). Also, since \((c_n) \to b \), \(\exists N_2 \in \mathbb{N} \) st. for \(n > N_2 \), \(|c_n - b| < \varepsilon \).
In particular, \(c_n < b \). Let \(N = \max \{N_1, N_2\} \). For \(n > N \), we have
\[b - \varepsilon < a_n < c_n < b + \varepsilon, \] so \(b - \varepsilon < b_n < b + \varepsilon, \) so \(-\varepsilon < b_n - b < \varepsilon, \)
and thus \(|b_n - b| < \varepsilon. \) So \((b_n) \to b. \).
15 a) Let \(x \) be an accumulation point of \(S \). For each \(n \in \mathbb{N} \), choose \(s_n \in N^k(x, \frac{1}{n}) \cap S \). Since \(x \) is an accumulation point, we may always make such a choice of \(s_n \).

Claim: \((s_n) \rightarrow x \). Let \(\varepsilon > 0 \). By the Archimedean property, there exists \(N \in \mathbb{N} \) so that \(\frac{1}{N} < \varepsilon \).

Then for \(n > N \), \(\left| s_n - x \right| < \frac{1}{n} < \frac{1}{N} < \varepsilon \). So \((s_n) \rightarrow x \). Also, since \(s_n \in N^k(x, \frac{1}{n}) \cap S \), we have \(s_n \neq x \) \(\forall n \in \mathbb{N} \), and \(s_n \in S \), so \((s_n) \subseteq S \setminus \{x\} \).

Now suppose there is such a sequence \((s_n) \). Let \(\varepsilon > 0 \). Since \((s_n) \rightarrow x \), \(\exists N \in \mathbb{N} \) so \(\left| s_n - x \right| < \varepsilon \) for \(n > N \). Also, since \((s_n) \subseteq S \setminus \{x\} \), we have \(s_n \neq x \) \(\forall n \in \mathbb{N} \). Then \(s_{n+1} \in N(x, \varepsilon) \cap S \), so \(x \) is an accumulation point.

b) Suppose \(S \) is closed. Then \(S' \subseteq S \) (by 3.4.17). Let \((s_n) \rightarrow x \) be a convergent sequence of points in \(S \). If \(s_n = x \) for some \(k \in \mathbb{N} \), then since \((s_n) \subseteq S \), \(x \in S \). Otherwise \((s_n) \subseteq S \setminus \{x\} \), so by part (a) \(x \in S' \), so \(x \in S \).

Now suppose every convergent sequence in \(S \) converges to a limit in \(S \). To show \(S \) is closed, it is sufficient by 3.4.17 to show \(S' \subseteq S \).

So suppose \(x \in S' \). By (a) \(\exists (s_n) \rightarrow x \) of points in \(S \). Then by hypothesis \(x \in S \).

4.2.3 (a) \(\lim_{n \to \infty} \frac{5n^2 + 4n}{7n^2 - 3n} = \lim_{n \to \infty} \frac{\frac{5n^2 + 4n}{n^2}}{\frac{7n^2 - 3n}{n^2}} = \lim_{n \to \infty} \frac{5 + \frac{4}{n}}{7 - \frac{3}{n}} \)

\[(4.2.1.d)\]

\[= \frac{\lim_{n \to \infty} 5n^2}{\lim_{n \to \infty} 7n^2} - \frac{\lim_{n \to \infty} 4n}{\lim_{n \to \infty} 3n} = \frac{5}{7} - \frac{4}{3} \lim_{n \to \infty} \frac{1}{n} = \frac{5}{7} - \frac{4}{3} \cdot \frac{1}{n} \]

(b) \(\lim_{n \to \infty} \frac{2n^4 + 7}{n^5 - 3n} = \lim_{n \to \infty} \frac{\frac{2n^4 + 7}{n^4}}{\frac{n^5 - 3n}{n^4}} = \lim_{n \to \infty} \frac{2 + \frac{7}{n^4}}{1 - \frac{3}{n^4}} \)

\[(4.2.1.d)\]

\[= \lim_{n \to \infty} \frac{2 + \lim_{n \to \infty} \frac{7}{n^4}}{1 - \frac{3}{n^4}} = \frac{2 + 0}{1 - 0} = 2 \]

This level of detail not required (esp. on a test) but it's worth seeing you can show this using only \(\frac{1}{n} \to 0 \) and from 4.2.1.