Functions, composition, and inverse

1. Let $f : A \to B$ be a function. Let C, C_1, C_2 be subsets of A, and let D, D_1, D_2 be subsets of B. In the book, we learned that in general $C \subseteq f^{-1}(f(C))$ and $f(f^{-1}(D)) \subseteq D$. In this problem, we investigate how f and f^{-1} interact with intersection. (Notes: The statements here appear as part of Theorem 2.3.16 in the text. Remember that, here, the notation f^{-1} means preimage of a set, not inverse function.)

(a) Prove that $f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$.

(b) Prove that $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$.

(c) Give a counterexample to the converse in (b).
2. (Exercises 2.3 #26-28) Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \). Give examples (you might like to give examples of both real-valued functions and functions on small finite sets):

(a) \(f \) and \(g \circ f \) are injective, but \(g \) is not.
(b) \(g \) and \(g \circ f \) are surjective, but \(f \) is not.
(c) \(g \circ f \) is bijective, but neither \(f \) nor \(g \) is.

3. Consider the bijections (injective and surjective) \(f_1(x) = x + 1 \), \(f_2(x) = x/2 \), and \(f_3(x) = x^3 \). Form the six possible compositions of the three functions, writing the six compositions both as functions of \(x \) and using composition notation, and then write the inverses of the six, both as functions (of \(y \), let’s say) and as compositions of the inverses of the original functions.