
ON BROUWER’S FIXED POINT THEOREM

N.V. KRYLOV

Abstract. We give a short new proof of Brouwer’s fixed point theorem
based on one time application of the change of variables formula (no
Stokes’ formula or di↵erential form calculus).

There are very many di↵erent proofs of the celebrated Brouwer fixed point
theorem. Here we present one more, as we hope, a new one.

By Rd we denote the Euclidean space of points x = (x1, ..., xd). When it
makes sense, for real-valued u(x) on Rd we denote

Diu =
@u

@xi
.

If F = (F i) is a smooth mapping of Rd to Rd, we set

DF = (aij)d
i,j=1, aij = DjF

i

Theorem 1 (Brouwer’s fixed-point theorem, 1910). Let K be a convex
closed bounded subset of Rd and let f : K ! K be a continuous mapping.
Then f has fixed points in K (where f(x) = x).

We prove this theorem after some preparation. The case that K, actually,
belongs to a linear subspace of lower dimension is considered by concentrat-
ing on this lower dimensional subspace. If K has nonempty interior, upon
mapping K onto B̄ := {x : |x|  1}, we easily reduce the situation to the
one when K = B̄.

Then we start with a lemma the proof of which have some intentional
gaps, closed later in Remark 1.

Lemma 2. Let ⌦ be a connected bounded domain in Rd with C1 boundary
and let F,G : ⌦̄! Rd be C1(⌦̄) mappings such that

F = G on @⌦.

Then Z
⌦

detDF dx =
Z

⌦
detDGdx.

Proof. Observe that for small t the mappings Ft = tF (x) + x and
Gt = tG(x) + x are one-to-one on ⌦̄ and, by the implicit function theo-
rem, have C1-inverse mappings on ⌦. Because of that they map @⌦ onto
the boundary of Ft(⌦) which is Ft(@⌦) and is, of course, the same as the
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boundary of Gt(⌦). Furthermore, for small t the intersection of Ft(⌦) and
Gt(⌦) is obviously nonempty and since they are connected and have the
same boundary, Ft(⌦) = Gt(⌦) and

VolFt(⌦) = VolGt(⌦)
for small t. We express this equality in terms of DFt and DGt asZ

⌦
det(tDF + I) dx =

Z
⌦

det(tDG + I) dx, (1)

where I is the unit d ⇥ d-matrix, then use the fact both parts of (1) are
polynomials in t. Since they coincide for small t, they are identical and by
comparing the coe�cients of td we get the result. The lemma is proved. ⇤

What follows is borrowed from pages 467–470 of N. Dunford and J.T.
Schwartz [1].

Corollary 3. For the domain ⌦ from Lemma 2 there is no C1(⌦̄) function
G : ⌦̄! @⌦ such that G(x) = x on @⌦.

Indeed, if we assume the contrary, then for F (x) = x we find

Vol⌦ =
Z

⌦
detDGdx.

However, the condition G : ⌦̄ ! @⌦ implies that all partial derivatives of
G are tangent to @⌦, in particular, all d-columns of DG(x) are tangent to
@⌦ at the point G(x). But the tangent plane to @⌦ at any point is only
(d� 1)-dimensional, so that the columns of DG are linearly dependent and,
hence, detDG = 0. This yields a contradiction, Vol⌦ = 0, and proves our
claim. ⇤

Now comes a particular case of Theorem 1, which implies it, as is explained
above.

Theorem 4. Let f : B̄ ! B̄ be a continuous mapping. Then f has fixed
points in B̄.

Proof. First assume that f is smooth. Assume that there are no fixed
points and for each x 2 B̄ define G(x) 2 B̄ as

G(x) = x� t(x)(f(x)� x),
where t(x) � 0 is the root of the equation

|x� t(f(x)� x)| = 1.
From the geometric picture it is clear that this equation has always two
distinct roots (f(x) 6= x) one is strictly negative and the other is nonnegative
(zero if x 2 @B). This means that the discriminant of the quadratic equation

|x|2 � 2t(x, f(x)� x) + t2|f(x)� x|2 = 1
is strictly positive, smooth, and its square root is smooth, so that

t(x) =
(x, f(x)� x) +

p
(x, f(x)� x)2 + (1� |x|2)|f(x)� x|2

|f(x)� x|2
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is a smooth function along with f(x) and G(x). Then we can use Corollary
3 and finish the proof in the case of smooth f .

In the general case, let fn be a sequence of polynomials such that

|fn � f |  1/n

on B̄. By replacing fn with (n/(n+1))fn, if necessary, we may assume that
the fn’s map B̄ into itself. Then there exist xn 2 B̄ such that fn(xn) = xn.
Obviously any converging subsequence of xn converges to a fixed point of f .
The theorem is proved. ⇤

Now we comment on some steps some people may regard as missing in
the proof of Lemma 2.

Remark 1. First question: Why (for small t) is Ft one-to-one? Assume that
there are two points x0, x00 2 ⌦̄ such that Ft(x0) = Ft(x00). Then by denoting
by NF the Lipschitz constant of F and taking t such that tNF  1/2, we
get

|x0 � x00| = t|Ft(x0)� Ft(x00)|  NF t|x0 � x00|  (1/2)|x0 � x00|
and |x0 � x00| = 0.

Second question: Why (for small t) does Ft map @⌦ onto @Ft(⌦)? Assume
that there is a point x0 2 @⌦ such that Ft(x0) 62 @Ft(⌦). Then Ft(x0) =:
y0 2 Ft(⌦) (which is an open set in Rd by the implicit function theorem)
and consequently there is x1 2 ⌦ such that Ft(x1) =: y0. We have x1 2 ⌦,
x0 2 @⌦, so that x1 6= x0, contradicting the one-to-one property. Thus,
Ft(@⌦) ⇢ @Ft(⌦).

That, conversely, any y0 2 @Ft(⌦) is in Ft(@⌦) follows from the fact that
there is a sequence xn 2 ⌦ such that yn := Ft(xn) ! y0 as n ! 1 and
for any subsequence of xn converging, say to x0 2 ⌦̄ we have Ft(x0) = y0,
which leaves only one possibility for x0: x0 2 @⌦, since y0 62 Ft(⌦).

Third question: Why (for small t) does the equality @Ft(⌦) = @Gt(⌦)
imply that Ft(⌦) = Gt(⌦)? Here we use that ⌦ is connected and first prove
that

Ft(⌦) \Gt(⌦) 6= ;.
For that we fix any x0 2 ⌦ and show that if t is su�ciently small, then

Ft(x0) 2 Gt(⌦). (2)

Let t be so small that, for any x 2 ⌦, the distance of x0 + tF (x0) � tG(x)
to @⌦ is at least half the distance of x0 to @⌦. Then define

xk+1 = x0 + tF (x0)� tG(xk), k = 0, 1, ...

Decreasing t if necessary we may assume that t|G(x0)�G(x00)|  (1/2)|x0�
x00| and then it follows that the sequence xk converges and the limit point,
say x0 is in ⌦ and satisfies Ft(x0) = Gt(x0). This proves (2).

Now assume that Ft(⌦) 6⇢ Gt(⌦). Then there is y1 = F (x1) 2 Ft(⌦) such
that y1 62 Gt(⌦). Take a broken line xs, s 2 [0, 1], inside ⌦ connecting x0

and x1. On the one end of this broken line F (x1) 62 Gt(⌦) and on the other
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Ft(x0) 2 Gt(⌦). Hence there is s 2 [0, 1] such that xs 2 ⌦, Ft(xs) 2 Ft(⌦)
and Ft(xs) 2 @Gt(⌦) = @Ft(⌦), the latter contradicting Ft(xs) 2 Ft(⌦). It
follows that Ft(⌦) ⇢ Gt(⌦). By symmetry, Gt(⌦) ⇢ Ft(⌦) (if t is small
enough) and Gt(⌦) = Ft(⌦).

Remark 2. An analytic proof of Lemma 2 can be obtained as in [1] if one
proves that for smoother Rd-valued H on Rd

detDH = (1/d)div Ĥ, Ĥj = HiAij ,
dX

j=1

DjAij = 0,

where Aij are the cofactors of DjHi in the matrix DH.
Indeed, in that case

d

dt
detD[tF + (1� t)G] =

dX
i,j=1

AijDj [F i �Gi] =
dX

i,j=1

Dj
�
Aij [F i �Gi]

�
,

the integral over ⌦ of the last divergence is reduced to the integral over its
boundary and and Aij [F i �Gi] = 0 on @⌦.
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