ON BROUWER’S FIXED POINT THEOREM

N.V. KRYLOV

ABSTRACT. We give a short new proof of Brouwer’s fixed point theorem
based on one time application of the change of variables formula (no
Stokes’ formula or differential form calculus).

There are very many different proofs of the celebrated Brouwer fixed point
theorem. Here we present one more, as we hope, a new one.

By R? we denote the Euclidean space of points = = (z!,..., 2%). When it
makes sense, for real-valued u(z) on R? we denote

ou
If F = (F") is a smooth mapping of R? to R?, we set
DF = (a¥)},_,, a" = D;F

Theorem 1 (Brouwer’s fixed-point theorem, 1910). Let K be a convex
closed bounded subset of R? and let f : K — K be a continuous mapping.
Then f has fized points in K (where f(z) = x).

We prove this theorem after some preparation. The case that K, actually,
belongs to a linear subspace of lower dimension is considered by concentrat-
ing on this lower dimensional subspace. If K has nonempty interior, upon
mapping K onto B := {x : |x| < 1}, we easily reduce the situation to the
one when K = B.

Then we start with a lemma the proof of which have some intentional
gaps, closed later in Remark 1.

Lemma 2. Let Q be a connected bounded domain in R? with C1 boundary
and let F,G : Q — R? be C1(Q) mappings such that

F=G on 0.
Then

/detDFdx:/detDde.
Q Q

Proof. Observe that for small ¢ the mappings F; = tF(x) + = and
Gy = tG(z) + = are one-to-one on ) and, by the implicit function theo-
rem, have C'-inverse mappings on ). Because of that they map 9Q onto
the boundary of F;(£2) which is F;(09Q) and is, of course, the same as the
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boundary of G¢(2). Furthermore, for small ¢ the intersection of F;(Q2) and
G¢(Q) is obviously nonempty and since they are connected and have the
same boundary, F;(Q) = G¢(£2) and

Vol Ft(Q) = Vol Gt(Q)
for small t. We express this equality in terms of DF; and DGy as

/det(tDF—i—I)dx:/det(tDG—i—I)dac, (1)
Q Q

where I is the unit d x d-matrix, then use the fact both parts of (1) are
polynomials in ¢. Since they coincide for small ¢, they are identical and by
comparing the coefficients of ¢ we get the result. The lemma is proved. [

What follows is borrowed from pages 467470 of N. Dunford and J.T.
Schwartz [1].

Corollary 3. For the domain §) from Lemma 2 there is no CH(Q) function
G : Q — 0Q such that G(z) = x on 0.

Indeed, if we assume the contrary, then for F(z) = x we find
Vol ) = / det DG dz.
Q

However, the condition G : Q — 99 implies that all partial derivatives of
G are tangent to 02, in particular, all d-columns of DG(x) are tangent to
00 at the point G(z). But the tangent plane to 92 at any point is only
(d —1)-dimensional, so that the columns of DG are linearly dependent and,
hence, det DG = 0. This yields a contradiction, Vol {2 = 0, and proves our
claim. (]

Now comes a particular case of Theorem 1, which implies it, as is explained
above.

Theorem 4. Let f : B — B be a continuous mapping. Then f has fized
points i B.

Proof. First assume that f is smooth. Assume that there are no fixed
points and for each x € B define G(z) € B as

G(x) =z —t(z)(f(z) — 2),
where ¢(z) > 0 is the root of the equation
[z —t(f(z) —2)] =1,
From the geometric picture it is clear that this equation has always two

distinct roots (f(x) # x) one is strictly negative and the other is nonnegative
(zeroif x € OB). This means that the discriminant of the quadratic equation

j2|? = 2t(z, f(z) — 2) + 2| f(2) —2]* =1
is strictly positive, smooth, and its square root is smooth, so that

t(x) — (x7f(x) — .’L') + \/(x’ f(w) — x)Q + (1 — ‘x|2)|f(x> — x’2
|f(x) —z[?
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is a smooth function along with f(x) and G(x). Then we can use Corollary
3 and finish the proof in the case of smooth f.
In the general case, let f,, be a sequence of polynomials such that

[fn—fI1<1/n

on B. By replacing f,, with (n/(n+1))f,, if necessary, we may assume that
the f,’s map B into itself. Then there exist x,, € B such that f,(z,) = 2.
Obviously any converging subsequence of x,, converges to a fixed point of f.
The theorem is proved. (]

Now we comment on some steps some people may regard as missing in
the proof of Lemma 2.

Remark 1. First question: Why (for small t) is F; one-to-one? Assume that
there are two points 2/, 2" € Q such that Fy(z') = Fi(2”). Then by denoting
by Np the Lipschitz constant of F' and taking ¢ such that tNp < 1/2, we
get

|7" — 2| = t|Fy(2) — Fy(2")| < Nptla' — 2" < (1/2)]2" — 2"

and |z — 2| = 0.

Second question: Why (for small ¢) does F; map 09 onto 0F;(£2)? Assume
that there is a point xy € 99 such that Fy(z9) ¢ 0F;(2). Then Fi(zg) =:
Yo € F4(Q) (which is an open set in RY by the implicit function theorem)
and consequently there is x; € Q such that Fi(x1) =: yo. We have z1 € ,
xo € 0L, so that x1 # xg, contradicting the one-to-one property. Thus,
F,(0Q) C OF,(R).

That, conversely, any yo € 0F;(Q2) is in F;(092) follows from the fact that
there is a sequence xz,, € ) such that y, = Fy(z,) — yo as n — oo and
for any subsequence of z,, converging, say to zo €  we have F;(xg) = o,
which leaves only one possibility for xg: xg € 99, since yo & Fi(£2).

Third question: Why (for small ¢) does the equality 0F;(Q2) = 0G(f)
imply that F;(Q2) = G¢(Q2)? Here we use that 2 is connected and first prove
that

F(9) N Gi(9) £ 0.
For that we fix any zg € 2 and show that if ¢ is sufficiently small, then
Fi(z0) € G4(Q). (2)
Let ¢ be so small that, for any x € €, the distance of xg + tF(x¢) — tG(z)
to 91 is at least half the distance of xy to 9€2. Then define
Tht1 Zﬂfo—i-tF(Io) —tG(l‘k), k=0,1,..

Decreasing t if necessary we may assume that t|G(2’) — G(2”)| < (1/2)]2' —
x| and then it follows that the sequence xj converges and the limit point,
say 2’ is in © and satisfies Fy(x¢) = G¢(2’). This proves (2).

Now assume that F;(2) ¢ G¢(£2). Then there is y1 = F(z1) € F;(2) such
that y1 & G+(Q2). Take a broken line x5, s € [0, 1], inside €2 connecting xg
and z1. On the one end of this broken line F'(z1) € G¢(£2) and on the other
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Fi(x0) € G¢(2). Hence there is s € [0, 1] such that x5 € Q, Fi(z,) € F1(Q)
and Fi(xs) € 0G(Q) = OF(R), the latter contradicting Fy(zs) € Fi(Q2). It
follows that F;(2) C G¢(€2). By symmetry, G¢(Q2) C Fi(Q2) (if ¢ is small
enough) and G¢(2) = Fi(Q).

Remark 2. An analytic proof of Lemma 2 can be obtained as in [1] if one
proves that for smoother R%valued H on R?

d
det DH = (1/d)leﬁ, IA{j = HiAij, ZDJAU = 0,
j=1
where A;; are the cofactors of D;H i in the matrix DH.
Indeed, in that case

d d
d i i i i
- det DtF + (1 - 1)G] = ;1 Ay;Dj[F* — G = ;1 D;(A;[F' - GY),
the integral over {2 of the last divergence is reduced to the integral over its
boundary and and A;;[F* — G*] =0 on 0.
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