Syllabus

Topics in Probability, Math 8660, Itô stochastic equations and elliptic and parabolic differential equations, Fall 2016

Lectures: 11:15-12:05 MWF VinH 1
Instructor: Nicolai Krylov, VinH 225, tel. 625-8338, nkrylov@umn.edu
http://www.math.umn.edu/~nkrylov

Office hours: MWF, 13:25-14:15
Textbook: Lecture notes will be provided

Final examination: Take home final due on December 22, 2016.

PREREQUISITE KNOWLEDGE: Basics of the theory of discrete time martingales.

APPROXIMATE OUTLINE OF THE COURSE: The course will be about the relations between diffusion processes (solutions of Itô stochastic equations) and second-order linear elliptic and parabolic differential equations. The goal is to show how probabilistic methods help obtain important information about solutions of PDEs.

A few homeworks will be assigned and will form part of the final grade.

The contents of the lecture notes is given on the next two pages (which have numbers i and ii).
Contents

Preface iii

Chapter 1. Random walks and finite-difference equations 1
 1. Random walks on \(\mathbb{Z}^d \) 1
 2. Limit behavior of trajectories 4
 3. Finite-difference equations 6
 4. Random walk approximations for the Poisson’s equation in domains 11

Chapter 2. Itô stochastic integral 15
 1. Wiener process 15
 2. Integration against a random orthogonal measure 18
 3. The Wiener process on \([0, \infty)\) 26
 4. Wiener process and Laplace’s operator 27
 5. Itô stochastic integral 33
 6. Properties and extensions 37
 7. Itô’s formula 43
 8. Estimating derivatives of harmonic functions 49

Chapter 3. Itô stochastic equations 53
 1. Solvability under monotonicity conditions 53
 2. A digression into the theory of PDEs with monotone coefficients.
 Minty-Browder method 55
 3. Proof of Theorem 3.1.3 59
 4. Smoothness of solutions with respect to a parameter 65
 5. More about stopping times 71
 6. Random time change in stochastic integrals 76
 7. Keeping solutions of Itô equations in domains 85

Chapter 4. Quasiderivatives 89
 1. The notion of quasiderivative 89
 2. Basic examples of quasiderivatives 92

Chapter 5. Some examples of applying quasiderivatives 97
 1. Using time-change related quasiderivatives I 97
 2. Using time-change related quasiderivatives II. The case of
 processes nondegenerate along the normal to the boundary 100
 2.1. Working out Example 5.2.1 probabilistically 101
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:2. General case. Adding parameters P into the picture</td>
<td>105</td>
</tr>
<tr>
<td>3. Example 5.1.1 revisited using general quasiderivatives</td>
<td>110</td>
</tr>
<tr>
<td>4. Using measure-change related quasiderivatives in the case of</td>
<td></td>
</tr>
<tr>
<td>uniformly nondegenerate processes</td>
<td>111</td>
</tr>
<tr>
<td>4:1. General uniformly elliptic equations</td>
<td>111</td>
</tr>
<tr>
<td>4:2. Parabolic equations</td>
<td>114</td>
</tr>
<tr>
<td>Chapter 6. Kolmogorov’s equation</td>
<td></td>
</tr>
<tr>
<td>1. Estimating moments of first quasiderivatives</td>
<td>117</td>
</tr>
<tr>
<td>2. An application</td>
<td>120</td>
</tr>
<tr>
<td>3. Second-order quasiderivatives</td>
<td>123</td>
</tr>
<tr>
<td>4. Estimating moments of second-order quasiderivatives</td>
<td>126</td>
</tr>
<tr>
<td>5. Kolmogorov’s equation in the whole space</td>
<td>128</td>
</tr>
<tr>
<td>6. Kolmogorov’s equation in generalized sense</td>
<td>130</td>
</tr>
<tr>
<td>7. Some integral approximations of differential operators</td>
<td>133</td>
</tr>
<tr>
<td>8. Kolmogorov’s equations in domains</td>
<td>138</td>
</tr>
<tr>
<td>Bibliography</td>
<td>141</td>
</tr>
</tbody>
</table>